D-fAZ08 945 com St
WA o

(2

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Software Process Tools and Techniques Evaluation Report
Version 1.0
Contract No. F19628-88-D-0032

Task IS15-Software Process Management

DTIC

E_L’"(i k:
Sipz91992 § B

Prepared for:
Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

LR SO

Poro ;,,__'.,,_'j: e T T ——— Prepared by:
l f XI Ai’.‘x L -":;;‘é‘:-:r‘!_.':jla;a'r‘?d z
distiibution is (nl e » IBM Federal Sector Division
e 800 North Frederick Avenue
Gaithersburg, MD 20879

52-260
02 o % 107 Wiy

3P%

This document has been approved for public release.

[ftorm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0180
1461995 | AGUr DY ITAPOME, INCIUAING LRE LIM® ICH IFVIAWIRg 172 (Z1A4 LCareMNg Eaivting 04td JOUT(EL.

PuDiC 1POIF1AA DLIIPN (Or thiy COBCTION 06 INISIMALION o SYLIMALRG 1O

Jatnerng dnd Muntuning the data neaded, and pPICUING ANa ¢
CAHECTION OF IMOIMALON. INCIudINg 3uq-ICsbiuny fOr rrducing th DUrGCN. 19 WAVAiNGLON HEAAAQUINIEN SCIvices, Direcmordte for tninrmanen Jdaranions and Reports. 12 15 Jetierson

Qaves 16Qhway, Suite 1204 Arhinqron, VA 22202-2102, and 10 the Offsice 21 Management and Hudqet, PADErwork Reduction Project (0734-51a0). Jvavmncinn, DC 20903
1. AGENCY USE ONLY (Ledve blank) 2. HREPORT DATE 3. REPORTY TYPE AND DATES COVERED
iSeptember 30, 1991 Initial

vq the (nltection af «NiorMation Send (OMMeENts tF)Arding this DL/Gen ehimate Of 47v GLher JiDext of this

3. ITLE AND SUDBTITLE 5. FUNDING NUMBERS

Software Process Tools and Techniques Evaluation Report
F19628-88-D-0032/0005

6. AUTHCR(S)

William H. Ett, IBM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 0. PERFORMING ORGANIZATION
REPORT NUMBER

IBM Federal Sector Division
800 North Frederick Avenue
Gaithersburg, MD 20879 03705-001

9. SYUNSORING/ MONITORING AGENCY NAME(S) AND ACTRESS(ES) 10. SPONSORING / MONITOQRING
AGENCY REPORT NUMBER

Electronic Systems Division/AVK
Air Force Systems Command, USAF
Hanscom Air Force Base, MA 01731-5000

11. SUPPLEMENTARY NOTES

N/A

123. DISTRIBUTION 7 AVAILASILITY STATEMENT 125. DISTRIBUTION CODE

Cleared for public release

13. A35TRALT A faximum 200 woras)

This document describes the tools and technology examined on STARS Task IS15. This re-
port summarizes the IBM team's examinatiun of software process representation tools and
techniques. It also summarizes the examination of software process enactment tools,
and techniques for implementing a process system from a well-defined system of processeq,
such as the "Cleanroom Engineering Software Development Process"”.

The software process definition tools and techniques sections of the document: 1) ex-
amines the feasibility of porting the Software Process Management System (SPMS) from thd
Apple Macintosh to the IBM STARS SEE, 2) provides a SPMS Port plan and 3) discusses the
use of box structures as a notation for recording aspects of software processes. The
software process enactment tools and techniques sections of the document: 1) describes
the KI Shell tool selected for supperting the IBM STARS "Cleanroom Software Process Casg
Study", 2) describes the specification, design and implementation of the "Cleanroom
Engineering Process Assistant" prototype, and 3) provides lessons learned from perform-
ing the "Cleanroom Software Process Case Study”. Finally the document makes recommenda
tions for the selection of software process definition and enactment support capabili.
ties for the IBM STARS SEE. L

13 suwizCr senins KI Shell, Case Study, Software Process Enactment, 15. HUMUER OF PaGEs
Cleanroom Engineering, Software Development Process, Software
Process Management System, Process Definition Tools, Process Rep- |16 PRiCE CCOE
resentation Techniques, Software Process Enactment Tools N/A
B2 Ut LASSWFICATION 18. SeCumls CLASSINICATION 19, SECURITY CLAMSIFICA IS JJ. LIMITATION OF ABSTRACT
Cr JEPONT QF T'!'S PAGE OF ABSTRACT
u‘;Unclassified Unclassified Unclassified SAR

cancatg Form .93 2.y 2 39)

[X VR B Y

B R I M TRl)

R S S,

This document was developed by the IBM Federal Sector Division, located at 800 North I'rederick
Avenue, Gaithersburg, MD 20879. Quecstions or comments should be directed to the document
owner and author, William H. Ett, IBM, (Internet: ETTBZWMAVM7.iinusl.ibm.com).

This document is approved for release under Distribution “C” of the Scientific and Technical In-
formation Program Classification Scheme (DoD Directive 5230.24). Permission to use, modify,
copy or comment on this document for purposes stated under Distribution “C” without fec is is
hereby granted. The Government (IBM and its subcontractors) disclaims all responsibility against
liability, including expenses for violation of proprictary rights, or copyrights arising out use of this
document. In addition, the Government (IBM and its subcontractors) disclaims all warranties with
regard to this document. In no event shall the Government (IBM nor its subcontractors) be liable
for any damages in connection with the use of this document.

I e e ey
A w et T ;
ATCASICT ‘) !
NS OEn !

.

Al

[RCRU o

< T ﬁmf\s
B AT L AN T {:‘!‘{u '.r".\,: PO
M 4 v‘b.‘h&) x

Lo oee

STARS Task I1S-15
Software Process Tools and Techniques Evaluation Report
Version 1.0

23 September 1391

W. H. Ett, IBM

R. H. Cobb, SET

Herb Krasner, SAIC
Ara Kouchakdjian, SET
Susan Phillips, SAIC
Jay Ramanathan, UES
Rajiv Ramnath, ULS
Bruce Reed, UES

Jim Terrel, SAIC

international Business Machines Corporation
Federal Sector Division

System Environments

800 North Frederick Avenue

Gaithersburg, Maryland 20879

Intentionally left blank.

il STARS Task IS-15 Software Process Tools and Techniques Fvaluation Report Version 1.0

Preface

Preface
This report describes the activities and lessons learned during the performance of IBM’s “S” increment
process tasks. The IBM STARS “S” Increment Process Task Team was composed of personnel from:
+ IBM Federal Sector Division, Software Technology and Products, Gaithersburg, Maryland
— William H. Ett, IBM
» Science Applications Intermnational Corporation (SAIC), Software Technology Center, Austin, Texas
— Herb Krasner, SAIC
— Susan Phillips, SAIC
— Jim Terrel, SAIC
— Adam Linehan, SAIC
» Software Engineering Technology, Incorporated (SET), Annapolis, Maryland
— Richard H. Cobb, SET
— Ara Kouchakdjian, SET
— Roger Sisson, SET
+ UES, Incorporated, Columbus, Ohio
— Jay Ramanathan, UES
— Rajiv Ramnath, UES
— Bruce Reed, UES
-~ Venhat Ashok, UES.

Preface

Author Sign-Off

1. W. H. Ett, IBM

2. R. H. Cgbb, SET

4. Ara Kouchakdjian, SET

e e

5. Susan Phillips, SAIC

6. Jay Ramanathan, UES

7. Rajiv Ramnath, UES

Q_au“w w

. Bruce Reed, UES

iV STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

Contents

1.0 Document Introduction 3
1.1 Audience of Document 3
1.2 How this Document Can Be Used 3
1.2.1 Background 3
{.2.2 Provide Reader with Basic Concepts of SPMS 4
1.2.3 Provide Reader with a Case Study of Implementing a Defined Process 4

2.0 IBM STARS Task IS-15 5
2.1 Software Process Tools and Techniques Evaluation Report 5
2.2 Software Process Management 6
2.2.1 Software Process Management: A Behavioral View 6
2.2.2 Software Process Modeling 8
2.2.3 Software Process Enactment 14
2.2.4 Process Improvement 19
2.2.5 Metrics 19

3.0 STARS IS-15 Task Organization 25

4.0 STARS IS-15 Candidate Tool Acquisition 27

4.1 Constraints on Tool Selection 27

4.2 Tool Selection for Providing a Software Process Modeling Capability 27
4.3 Tool Selection for Providing a Software Process Enactment Capability 28

5.0 The Knowledge-Based Integration Shell 31
5.1 KI Shell View of Process Technology 31
5.2 Summary of KI Shell Features 37
5.3 KI Shell Concepts 37
5.3.1 Method Meta Language 37
5.3.2 KI Shell Process Modeling and Enactment Features 39
5.4 Installation of a KI Shell Application 41

6.0 STARS IS-15 Software Process Case Study Preparation 45

6.1 Preparation and Scoping of “Cleanroom Software Process Case Study” 45
6.1.1 Brnef Description 45
6.1.2 Lessons Learned 45

6.2 Preparation of Specification for the CEPA Demonstration 46
6.2.1 Brief Descniption 46
6.2.2 Lessons Learned 47

6.3 Validation of the "Cleanroom Engincering Process Assistant” Implementation 48
6.3.1 Brief Description 48
6.3.2 lessons Leamed 49

6.4 Major Lessons Leamed from Case Study Preparation 49

6.5 Usc of Cleanroom Specification Techniques to Model Processes 50

7.0 Software Process FEnactment Experiment and Demonstration Preparation 39
7.1 CEPA Demonstration Systemn Desenption 39

7.1.1 Software Engineenng Environments 59

7.1.2 CEPA and Software Fngineering Environments 60

7.13 CEPA: An Overview 61

7.1.4 Using The CEPA System 62

7.1.5 CEPA Features 65

Contents ¥

7.1.6 CEPA Tools 75
7.1.7 Using CEPA (continued) 75
7.1.8 Conclusions and Lessons Leamned 86
7.2 Overview of the Process for Developing Process Applications in KI Shell 87
7.2.1 Process for Developing KI Shell Process System Applications 88
7.3 CEPA Prototype System Development Implementation Log Overview 90
7.3.1 March 23 through Apnl 19 90
7.3.2 Aprd 22 through May 3 90
7.3.3 May 6 through May 24 93
7.3.4 May 27 through June 12 93
7.3.5 June 12 through June 21 93
7.3.6 June 24 through June 28 94
7.3.7 July | through July 30 94
7.3.8 CEPA Prototype Development Summary 95
7.4 Cleanroom Engineenng Process Assistant Installation Instructions 95
7.4.1 Pre-installation Activities 95
7.4.2 Install the Oracle RDBMS 96
7.4.3 Install the KI Shell / CEPA Files 97
7.4.4 Create and Setup the CEPA Account 98
7.4.5 Setup the CEPA FileStore Version 99
7.4.6 Sctup the CEPA ORACLE Version 100
7.4.7 Archiving the CEPA Database 101
7.4.8 Restoring an Archived CEPA Database 101
7.5 CEPA Demonstration Operation Instructions and Script 102
7.5.1 CEPA Operation Instructions 102
7.5.2 CEPA Demonstration Scnpt 102
7.5.3 CEPA Demonstration Script 103
7.6 Description of all CEPA Software Source Deliverables 105
7.7 Major Lessons Leamed from CEPA Implementation 108
7.7.1 Process Implementation Roles 108
7.7.2 Key Problem and Solution 108
7.7.3 KI Shell’s Suitability for Cleanroom 109

8.0 STARS IS-15 Software Representation Work 111
8.1 Software Process Modeling Support 111
8.1.1 Software Process Management System: Overview 111
8.1.2 Software Process Management: Concept of Operation 115
8.2 SPMS: Port Assessment to the IBM RISC System/6000 127
8.2.1 Process Model Database 129
8.2.2 Process Reasoning System 129
8.2.3 User Interface 130
8.2.4 COTS Project Management System 131
8.2.5 Conclusions 132
8.2.6 SPMS: Port Plan for Porting SPMS to the IBM RISC System/ 6000 133
8.2.7 Schedule 135
8.3 SPMS Prototype System User Traimng 135
8.3.1 SPMS Tramming Materials and Discussion 139
8.3.2 SPMS Evaluation Prototype: Hardware Software Requirements 139
8.4 Muyjor Lessons Feamned from SPMS Migration Analysis and SPMS Traming 142
841 Tessons eamed from SPMS Migration Analysis 142

9.0 IBM STARS SEE Process Management Architecture Discussion 143

9.1 SPMS Coexistance Strategy with Other Process Management Capabilities 143
9.1.1 HP SoftBench - 143
9.1.2 K1 Shell 144

Y1 STARS Task [8-13 Software Process Tools and Techniques Fyaluation Report Version 1.0)

9.1.3 SPMS, KI Shell, and HP Softbench Coexistence Strategy 144
9.2 IBM STARS Process Management Architecture Options 145
9.3 Product Integration Strategy 146
9.3.1 The Components for a Process Support Environment 146
9.3.2 Process Support Environment Integration 149
9.3.3 Benefits of a Process Support Favironment 151

10.0 IS-15 Task Conclusions 153
11.0 References 155

Appendix A. SPMS Training Class Materials 157

Contents

vii

Intentionally left blank.

Vill STARS Task 1815 Software Process Foo 1 oand I echnigues Exafuation Report Version 1.0

Figures

I. The Layered Behavioral Model of Software Development 7

2. Softwarce Process Management 8

3. Example of an Approach to Software Development 12

4. Portion of the RADC Quality Framework 21

5. Sofiware Quality Framework Factors and Associated Criteria 22

6. IBM STARS “S” Increment Process Task Team 26
Example of a Concurrent Lingincering Process Performed by a Die Designer Role 32
8. Lnterprise Activity Must Be Performed By Using Intormation / Mechanisms under Appropnate
Control 33
9. The Development and Use of KI Shell Method 34
10. ACTIVITY & ROLES: To Sur_ort a Generic Fnterpnse Sub-Process 36
1. PERFORM EVENT CAUSED BY A MOUSE CLICK AT THE USER INTERFFACE: Causes
Exccution of a C Procedure 36
12. Method Layout for UES’s CASE Manager 40
13. KI Shell’'s Runtime Architecture 42
14. Kuowledge-Bised Shell Wili Be Used to Implement a Specific ¥'1 Shdl Application 43
15. A Black Box Subfunction from the CEPA Specification §1
16. Devcloper Screen Format 53
17. Using CEPA Facilitics to Perform a Black-Box Task 54
18, Sample Process from Cleanroom En_ineering Sottware Development Process (1 of 2) 55
19. Sample Process from Cleanroom Engineering Software Development Process (2 0of 2) 56
20. Development Team Leader Screen Format 63
21. CEPA Admnstrator Screen Format 68
2., Software Engincering Manager Screen Format 69
23. Speafication Team Leader Screen Format 70
24 Centification Team Leader Screen Format 71
25. Spectfier Screen Fooonat - 72
26. Developer Screen Format 73
27. Certifier S~~~en Format 74
28, Using CEPA Fo lities to Perform a “Black Box Task” 77
29. Using CEPA Facilitics to Perform a “State Box” Task 78
30, Using CEPA Facilities to Perform a "Clear Box” Task 79
3. Using CEPA Facilities to Perform a "Refinement” Task 80
32, Using CEPA Facilities to Perform a "Correctine Code” Task 81
A3 Using CEPA Foreilities to Perform a “Design € crtification” Task 82
34 Using CEPA Fuaulities to Perform a "Conduct Certification” Task 83
35 Using CEPA Facilities to Perform a “Submit/Resolve a Question” Task §4
36, Using CEPA Facilities to Perform a “Failure Report Correction” Task 85
37 Form for an IDETFO Process 87
K. Cleanroom Process Method Tayout (Part 1 of 2) 91
39, Cleanroom Process Mcthod TLavout (Part 2 0of 2) 92
J0. What Is Software Process Management? 112
41 Hheh-1 evel Architecture of SPMS. 113
420 The Systean Architecture to: SPAS. 114
43 Project Process Plan Coneept 116
o A Process Maodel Component. 117
45 A High-Tevel View of Operation of SPMS 119
46, Process Activity Modohing Ssmbols 122
47 Process Actvity Links 124
A% Process Granulanty Fxpansion Coneept 129
490 SPMIS Arctutecture 12N

>

bigures 1IN

50. Candidate Trade Options for SPMS Port 134

51. SPMS Port Plan (1 of 3) 136

52. SPMS Port Plan (20of 3) 137

53. SPMS Port Plan (30f 3) 138

54. Hierarchical Structure of SPMS Folder 140

55. Candidate IBM Process Support Environment Architecture Concept 150
56. levels of Integration 152

X STARS Task 18153 Software Process Tools and Techniques Fraluation Report Version 1.0

Tables

1. Pnmary Alternative Software Process Model Types. 11
2. CEPA Prototype System Development Summary 95
3. Components of a Process Support Environment 148

Tables XI

Products Referred to in This Report

—

IS I VI

S T T N T N T N S e e
£ U N = D W 00 00 bk W N - O

AlIX is a product of the IBM Corporation.

CASE Manager is a product of UES, Incorporated.

HP Encapsulator is a product of the Hewlett-Packard Company.

HP Remote FFile Access is a product of the Hewlett-Packard Company.
HP SoftBench is a product of the Hewlett-Packard Company.

HP/UX is a product of the Hewlett-Packard Company.

HP 9000 is a product of the Hewlett-Packard Company.

HyperCard is a product of Apple Computer, Incorporated.

IBM RISC System/6000 is a product of the IBM Corporation.

Informix is a product of Informix Software.

. Ingres 1s a product of Ingres Corporation.

. KI Shell is a product of UES, Incorporated.

. Macintosh is a product of the Apple Computer, Incorporated.

. MicroPlanner Xpert is a product of Micro Planning International, UK.

. NEXPERT Object is a product of Neuron Data Corporation.

NEXTRA is a product of Neuron Data Corporation.

. Oracle is a product of Oracle Corporation.

. Presentation Manager is a product of the IBM Corporation.

. PRO*C is a product of ORACLE Corporation.

. SUN/OS is a product of Sun Microsystems.

. SUN 3 is a product of Sun Microsystems.

. STATEMATE i1s a product of i-Logix, Incorporated.

. Sybasc 1s a product of Sybase, Incorporated.

. TEAMWORK is a product of trademark of Cadre Technologies.
25.

TEAMWORKSIM is a product of trademark of Cadre Technologies.

. UIM/X is a product of Visual Edge Software, Limited, Canada.
. VAN/VMS is a product of the Digital Equipment Corporation.

. WordPerfect is a product of WordPerfect Corporation.

29. XVT (Extensible Virtual Toolkit) 1s a product of XV'T Software.
30.

XP>M is a product of XPM, Incorporated.

Network File System (NFS) is an open industry standard for remote file systems, developed and oftered by
Sun Microsystems.

\ii

STARS Task 18-15 Software Process Tools and Techniques Evaluation Report Version 1.0

Registered Trademarks of Products Referred to in This Report

—

N I VIR

RO N B e e e e e e e e et e

. AlX is a registered trademark of the IBM Corporation.

CASE Manager is a registered trademark of UES, Incorporated.

KI Shell is a registered trademark of UES, Incorporated.

HyperCard is a registered trademark of Apple Computer, Incorporated.
IBM RISC System/6000 is a registered trademark of the IBM Corporation.

Macintosh is a registered trademark of Apple Computer, Incorporated.

. MicroPlanner Xpert is a registered trademark of Micro Planning International.

Microsoft Windows is a registered trademark of the Microsoft Corporation.
NEXPERT Object is a registered trademark of Neuron Data Corporation.
NEXTRA is a registered trademark of Neuron Data Corporation.

. OSF/Motif is a trademark of the Open Systems Foundation.

. Oracle is a registered trademark of Oracle Corporation.

. Presentation Manager is a registered trademark of the IBM Corporation.

. PRO*C is a registered trademark of ORACLE Corporation.

. STATEMATE is a registered trademark of i-Logix, Incorporated.

. TEAMWORK is a registered trademark of Cadre Technologies.

. TEAMWORK 1s a registered trademark of Cadre Technologies.

. UIM/X is a registered trademark of Visual Edge Software, Limited.

. UNIX is a registered trademark of AT&T.

. WordPerfect 1s a registered trademark of WordPerfect Corporation.

. X-Window System s a trademark of the Massachusctts Institute of Technology.
. XPM i1s a registered trademark of XPM, Incorporated.

. XVT (Extensible Virtual Toolkit) is registered trademark of XV'T Software.

Tables

Xiii

Intentionally left blank.

XiV STARS Task IS-15 Software Process Tools and Techniques Fvatuation Report Version 1.0

Intentionally left blank.

Intentionally lcft blank.

2 STARS Task 15-15 Software Process Tools and Techniques Fyaluation Report Version 1.0

1.0 Document Introduction

The purpose of the “Software Process Tools and Techniques Evaluation Report” is to (1) describe the key
activities of the IS-15 Process Task, (2) identify the products produced, and (3) discuss relevant task results.

1.1 Audience of Document

The intended audiences for this document are:

1. The STARS customer: To describe the activities of STARS Task IS-13, to identify the products
produced, and describe task results;

2. The STARS Prime Contractors: To transfer technology developed by the IBM STARS team in pursuit
of our goal to evaluate, select and experiment with products and techniques to field a software process
capability for the IBM STARS SEE;

3. The DoD, Services, and Government Users: To describe software process management technology and
tools that can be applied to assist DoD software development organizations in defining, modeling, and
testing process models for software development. Further, we will describe for the DoD, Services, and
Government users, tools and techniques available today, to implement a process model to facilitate the
enactment (or execution) of a project’s process for developing software.

1.2 How this Document Can Be Used

1.2.1 Background

There are three major activitics towards implementing a software process for enactment in a modem software
engineering environment (SEE):

I. The modeling of a software process in a form that can be readily understood and followed; You cannot
implement a software process you have not defined and do not understand;

2. The analysis of the process model developed for process implementation and the determination of how
processes can be enacted by the SEE or manually;

3. The implementetion of the process system, from the process models developed. (By process system, we
mean a system of processes that have been adapted and tailored to support a sclected development or
production cffort. Further, a process system is built to satisfy stated process driving requirements, such
as cost, schedule, and quality goal drivers.)

IBM planned the IS-15 Software Process Management task to provide the IBM STARS SEE, and poten-
tially all of the STARS SEEs, with the ability to support software process modeling, and to illustrate the
implementation of a defined software process for enactment. The results of the IBM IS-15 task are pre-
sented in this document. Further, this document was prepared to provide the reader with an understanding
of:

1. Software process modeling and the Software Process Management System (SPMS);

2. What 1t takes to implement a well-defined software process model using a commercially available tool,
such as UES's Knowledge Integration Shell (KI Shell).

Document Introduction 3

1.2.2 Provide Reader with Basic Concepts of SPMS

This document describes a tool for modeling and testing software processes, called the “Software Process
Management System (SPMS)” developed under the IBM STARS IR-23/B task. It also describes how the
prototype system developed under IR-23/B can be migrated to the IBM STARS SEE and serve as a key
component in the planning and modeling of software processes. Further, this document will describe a coex-
istence strategy of SPMS with other candidate software process management tools.

This document also includes training materials prepared for the SPMS evaluation prototype training class,
that were given to the SEI Process Definition Project group to support their software process modeling
activities.

From the discussion of SPMS, the reader will gain understanding of how SPMS could be used to support
the modeling of software processes. The discussion will also refer the reader to additional source materials
for further study.

1.2.3 Provide Reader with a Case Study of Implementing a Defined Process

This document will describe a software process implementation experiment, taking a software process model
developed under STARS Task IR-70/E, named the “Cleanroom Engineering Software Development Process,”
and scoping it to produce a “Cleanroom Software Process Case Study” problem for implementation in a
process enactment tool called K1 Shell.

From the discussion of the development and implemcntation of the “Cleanroom Software Process Case
Study” problem, the reader will gain understanding of what is required to take a defined process model and
implement it using the KI Shell development environment, to support the enactment of a selected portion of
the "Cleanroom Engineering Software Development Process.”

4 STARS Task I1S-15 Software Process Tools and 1echniques Evaluation Report Version 1.0
9 P

2.0 IBM STARS Task IS-15

The purpose of STARS Task IS-15 was to:

1. Evaluate and select technology to support software process definition and enactment support for the
IBM STARS software engineering environment;

2. Develop a concepts of operation for process definition and process enactment support to determine effec-
tive approaches to support software process management for the IBM STARS SEE;

3. Develop a software process and implement it, to examine the software process support tools sclected.

2.1 Software Process Tools and Techniques Evaluation Report

The purpose of the "Software Process Tools and Techniques Evaluation Report” is to describe the activities,
products and results of STARS Task IS-15. In particular, this report describes:

1. IS-15 activitics, products, and results

2. The tools sclected to support IS-15 software process definition and cnactment expeniments and the
rationale for their selection

3. The development of the “Cleanroom Software Process Case Study” and the “Cleanroom Engincering
Process Assistant (CEPA)” demonstration scenario including:

a. The scoping of the “Cleanroom Engineering Software Development Process” for the “Cleanroom
Software Process Case Study”

b. The development of the “Cleanroom Engincering Process Assistant” demonstration scenario and
specification

c. The use of Box Structures and Cleanroom specification techniques for representing processes
d. The process for implementing the "Cleanroom Engineering Process -Assistant”
e. The “Clecanroom Engineering Process Assistant” demonstration system that was unplemented
f. Instructions for demonstration use.

4. The Software Process Management System (SPMS) and
a. How SPMS can be migrated to the IBM RISC System/6000 and a plan for its migration

b. How SPMS can coexist with other process management capabilities, including K1 Shell, the process
enactment services provided by HP SoftBench, and cooperative software process cnactment support
provided by coordination technology.

c. How SPMS technology will be employed to support the SEI in reuse-based process modceling and
software process asset capture and representation.

5. The SPMS training session prepared for the SEI and the system requirements for using the SPMS proto-
type.

IBM STARS lask IS-153 §

2.2 Software Process Management

The purpose of this section is to introduce software process management concepts. This section provides
the reader with an overview of the state of software process management as well as to identify relevant issues
that need to be addressed in future STARS work.

We shall descnbe software process management from a behavioral perspective. We introduce software
process management in this way because it 1s important to recognize that there are many dimensions to the
management of process and to communicate to the reader that processes exist -- not only for individuals --
but for groups or tcams, and the organizations to which they belong. Next, we shall provide an overview of
process enactment concepts. In the enactment discussion, we shall describe the three major views of process
that must be modcled to support process enactment, namely the “activity-based process modeling” view, the
“role-based process modeling,” and the “process information modeling” view. Finally, we shall provide an
overview of process improvement and the role of metrics in its support.

2.2.1 Software Process Management: A Behavioral View
A Layered Behavioral Model of Organizational Software Processes

Studies by Walston and Felix <34>, Boehm <3, 4>, McGarry <22>, and Vosburgh, Curtis, Wolverton,
Albert, Malec, Hoben, and Liu <33 > have demonstrated the substantial impact of behavioral (i.c., human
and organizational) factors on software productivity. To create software development technology that dra-
matically improves project outcomes, Weinberg <35>, Scacchi < 31>, and DeMarco and Lister < 10>
argue that we must understand how human and organizational factors affect the execution of software devel-
opment tasks. Software tools and practices conceived to aid individual activities have been disappointing in
not providing benefits that scale up on large projects to overcome the impact of team and organizational
factors that affect the design process. The IBM STARS process team has explored concepts to address these
problems to bring proiect and process management closer together.

An extensive study of 17 large software development projects (in 9 companics) done by the MCC in 1986-87
< 16> attempted to describe the processes and mechanisms through which productivity and quality factors
operate. These descriptions supported our need to understand how different tools, methods, practices, and
so forth actually affect the processes controlling software productivity and quality. Since large software
systemns are still generated by humans rather than machings, their creation must be analyzed and modeled as
a collection of behavioral processes. In fact, software devel .pment should be represented at several behav-
toral levels < 15>. As a result of the empirical studies of software development at MCC, the layered behav-
ioral model was crcated and defined as presented in Figure 1 on page 7 <8>. This model emphasizes
factors that affect psychological, social, and organizational processcs to show how they subsequently affect
process effectiveness, productivity and quality.

The layered behavioral model focuses on the behavior of those creating the artifact, rather than on the evolu-
tionary behavior of the artifact through its developmental stages. At the individual level, software develop-
ment is viewed as an intellectual task subject to the effects of cognitive and motivational processes. When
the development task exceeds the capacity of a single software engineer, a tcam is convened and social proc-
esses interact with cognitive and motivational processes in performing technical work. In larger projects
several teams must integrate their work on different parts of the system, and intertcam group dynamics are
added on top of intrateam group dynamics. Projects must be aligned with company goals and are affected
by corporate politics, culture, and procedures. Thus, a project’s behavior must be interpreted in the context
of 1ts corporate environment. Interaction with other corporations cither as co-contractors or as customers
introducces external influences from the broader world of business. The cumulative cffects on software devel-
opment can be represented in the layered behavioral model. The size and structure of the specific project
determine how much influence cach layer has on the development process.

6 STARS Task IS-15 Software Process Tools and Techniques valuation Report Version 1.0

Business Milieu

Company

Project

Team

individual
L i il]
Content of Ansiysis—gh ?"3‘"" snd Grovp Organizetional

Figure 1. The Layered Behavioral Model of Software Development.

The layered behavioral model is an abstraction for viewing process of large software projects in the context
of other behavioral processes. It encourages thinking about a software project as a system with multiple
levels of process involved. This does not replace traditional process models of software development, but
rather organizes supplementary process views. This is orthogonal to traditional process modeis by presenting
a cross-section of the behavior on a project during any selected development phase. Describing how soft-
ware development problems affect processes at different behavioral levels indicates how these problems ripple
through a project <31>.

The layered behavioral model encourages software process engineers to extend their evaluation of software
engineering practices from individuals to teams and projects to determine whether the aggregate individual-
level impacts scale up to an impact on programming in the large and allows them to explore multi-project
and organtzational impacts on projects.

At the project level, qualitative support is primarily process oriented and focuses on who is involved, how to
make those involved productive and efficient, how decisions are made, and how tasks are accomplished. This
does not undervalue the importance of the product, because the product becomes the focus around which
these essentially human design and development processes will be organized.

Therefore, improving software process quality involves understanding the human processes underlying soft-
ware development <8, 16>, providing methods and technologies to support these processes, and managing
them effectively. This is what we mean by software process management. (Figure 2 on page 8). Producing
a well-designed deliverable becomes the product of a well-managed set of human processes organized around
focused objectives and supported properly by process management technology. This involves support for
process modeling, simulation, enactment, and process evolution in next generation process-oriented software
engineering environments.

IBM STARS Task 1S-15 7

BEHAVORIAL :

HUMAN PROCESSES IN APPLYING
THE SOFTWARE DEVELOPMENT
PROCESS

MANAGEMENT:

MANAGEMENT OF THE SOFTWARE DEVELOPMENT
SOFTWARE DEVELOPMENT PROCESS

PROCESS

TOOLS AND METHODS:

METHODS AND TECHNIQUES TO
SUPPORT HUMANS IN APPLYING THE
SOFTWARE DEVELOPMENT PROCESS

Figure 2. Software Process Management.

2.2.2 Software Process Modeling

Software process rescarch is an emerging area of study within the field of software engincering. To make
progress in effectively examirung the issues, one must start by establishing a coherent view of the subject
matter to provide a conceptual framework for discussion. The defimtions presented and the discussion of the
interrelationships among them llow the formulation of cnitical questions about many aspects of the software
process.

While the key definitional issues have been discussed at a series of annual workshops (e.g., the International

Software Process Workshops 1 through 6), there is no current consensus as to the proper conceptual frame-
work. The view represented here builds on a preliminary hierarchy of concem., starting at project-onented

8 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

processes that are concerned with establishing the real needs of end users of systems and their impact upon
software process models. The view also recognizes the hierarchy of concerns from expertise and technoloyy
below all the way down to the structure of particular CASE tools. The organization :onsists of several levels
of progressively mere concrete software process issues and concerns.

The primary concern of STARS is how process managcinent will appiy to government projects (either con-
tracted or in-house). Therefore, we focus our discussion at the project level (1.e., project-oriented processes),
which serves 1o bound the scope of considerations as seen in the layered behavioral model. The broader
process concerns of a multi-project line of business are discussed later in section 2.

2.2.21 Project-Oriented Software Development Process Modeling

The primary focus of this scction is to describe the domain of software development process models. The
term sojtware development 1s taken to encompass the tull range of software and system-related activities from
problem statement through post delivery maintenance, modification, and evolution! (i.e., cradle to grave, hife-
time, or sometimes life cycle). There are other views of software engineening practice that do not focus on
process issues (e.g., an information-oniented model), and these must be considered as well. In the following
paragraphs, we define the terms of our conceptual framework and illustrate the definitions by posing relevant
issues at that lovel of concern

Considerable confusion has ansen in past discussions of the software process because of a lack of common
definitior-. Therefore. we detine the following terms.

Software process:
The collection of related activities, events, mechanisms, tasks, and/or procedures seen as a coherent
process involved in the production and evolution of a software system that satisfies a given need.

Software process model:
A descnptive representation of a software process that supports explanation, reusoning, simulation, and
so forth. A software process model should represent attributes or views of a range of particular soft-
ware processes and should be sufficiently specific to allow reasoning about them.

Software process models are valuable for supporting effective process management involving aspects of:
process planning, cnact® g, predicting, monitoring, adapting, and correcting. Software process models allow
for the:

1. Enabli.:2 of effective coordination by facilitating the communication of a formalized process leading to a
consensus understanding across the organization or project.

to

Lnabling of process reuse by facilitating analytic selection of a process model from a base set of alterna-
tives that include components and process abstractions. Reasoning about the alternatives 1s also
caabled.

3. Support for process evolution, adaptation, and correction occurs owing to the ability to define model-
based process measurements, experience collection, and process rationale.
Relevant 1ssues in process modeling at this level of concern are:

1. To what extent is a model deseriptive or presenptive; that 1s, how does it correspond to (correctly
desenbey how software is really built or to an ideal of how software showld be built?

2. To what extent does a model desenibe the entire process as opposed to somie aspect or view of a process?

I Feolution implies that system functionality evolves over time.

IBMSTARS Task IS 15 9

3. To what extent is a model uscful in developing managenal and technical approaches to software develop-
ment? Managing these cxtents (c.g. the gap between the real and the prescnibed ideal process model) is
one of the duties of the new process engincer.

2.2.2.2 Types of Project Process Models

Simplistically, a large software project occurs within the context of an ongoing negotiation about what the
user wants, what the customer can afford, and what the developer can build. This occurs within a manage-
ment context that must deal with three principal factors: cost, schedule, and quality. Within that context
there exists a range of possible strategics for defining an organized software development process on a large
software project. This range is delineated by two extremes. On one end of the spectrum 1s the job shop
philosophy, in which each project requires a totally different process based upon specialized project critena.
This seems to be the currently predominant strategy within DoD projects. On the other end of the spectrum
is the factory philosophy in which a standardized process 1s designed in advance and is reused on cach
project. This has been used successfully by the Japanese software factories, and the advantages gained have
been described by Cusumano <9>. In the middle of the spectrum would be the semi-factory philosophy in
which paiis of the process are reused on each project within an adaptable framework addressing specific
project nceds. We expect DoD projects to continue to be in situations where process adaptability is impor-
tant. The.cfore, we present the following sct of high level process model types that can be reused on
projects. :

The four primary alternative project-level software process model types are:
1. Waterfall,
2. COTS adaptation,
3. High-level specification transformation, and
4. Exploratory/incremental (includes Spiral).

(Sec Table 1 on page 11.) We classify each modcl according to the situations in which it is most applicable
and provide example applications for clanfication. We also discuss how to determine, or select, ar: appro-
priate model in the context of a contract program. It should be noted that these models can also be used at
the subproject level as well, and it is appropriate for more than one of these types to be used on a large
project, leading to a higher level model that contains these as subprocess instances. The integration of sub-
projects using different process models is currently problematic. A fifth type is the widely used, ad hoc (i.e.,
undefined) process model -- a discussion of which is beyond the scope of this section. It is not clear, as yet,
whether these model types are instances of any kind of process metamodel from which these tnhent proper-
tics (an interesting research topic).

The waterfall model has been described in many publications (e.g., Royce <30>); its applicability, however,
has not. We scc its primary usage in those situations in which the functionality, architecture, and technology
are well understood. Examples of this might be inventory control or data reduction and reporting. The
COTS adaptation model is most applicable in situations in which the application and technology are well
understood and where there are several commercial packages available that together achieve almost all of the
functionality required. The added value becomes the adaptation and integration of those COTS systems.
Examnle applications are fin "1} management or document preparation. The high-level specification trans-
formatiocn model is most userat when the functionality required 1s not well understood but where 4GL tech-
nology s available for the creation of high-level “programs.” Fxample applications include MIS or forms
management. The exploratory ‘incremental model is most useful when the major application issuces are not
well understood (e.g., feasibility, usage scenarios, functional features desired. cte.) and when a movement to
more stable capabilities is desired. This might include one or more early prototypes to clanfy these 1ssues.

V' xample applications include military C31, SDI, or real-time embedded systems.

10 STARS Task 1815 Software Process Tools and Techniques Fyatuation Report Version 1.0

Process Model Name Situation Characteristics Example Application

Well-understood applica-

1 Waterfall tion, architecture, tech- Data reduction
nology
Same as waterfall, but
2 COTS adaptation several commercial packages | Inventory control
available
High-level specification Ill-understood application,
3 ; . MIS
transformation usc of 4GLs

Major application and tech-
Exploratory / incremental / nology issues not under-

4 spiral / rapid-prototyping stood; need for early subset Military C31
demonstrations
5 Ad hoc / undefined m m

Table 1. Primary Alternative Software Process Model Types.

The major issue relative to choosing one of the model types is in how to interpret the notion of “well under-
stood” - that is, by whom is it well understood? We believe that this criterion must apply to all stakeholders
in the process if the model is to be used and adapted effectively across the system’s life. Major techniques to
be used in the exploratory/incremental model are prototyping and risk management. We define these tech-
niques as those that increase the probability of producing a useful, fieldable, and supportable system.

The relationship of these model types to the military acquisition, procurement, and contracting process can
be identified. During technology base, demonstration/validation (DEM/VAL), and proof of pnnciple efforts,
for example, the exploratory/incremental model is recommended. During the transition to full scale engi-
neering development (FSDE), an evaluation must be made to see whether one of the others should be used,
with the default being the exploratory / incremental model rather than the waterfall model. Durng FSDE, if
the technical approach tends toward heavy use of COTS, then negotiable requirements are achieved by using
the SOW requirements as COTS evaluation criteria, with selected COTS redefining the requirements. If a
point is reached in which all requirements, technology, and architectural issues are well understood, then a
waterfall approach is justified. The choice of H/L specification transformation depends on the availability of
4GL (or automatic programming) technology within well-defined application domains. This approach is only
recommended for traditional business-type applications or until domain modeling techniques and automatic
programming techniques come together for very specific application areas in the future. Strategies for
exploratory/incremental model contracts include the use of evolutionary software development processes
(SDPs) SDPs and issug/risk management plans. During the transition from FSDE into installation/ficlding/
operation/support, we recommend that the process model be transferred as the maintenance process starting
point. This needs to include process history and rationale to be effective on a continued system evolution
basis.

There are a number of applicability questions to consider.

I. Are there empirical reasons for preferring one modecl to another; that is, do they lead to more cost-
effective software development and,or a higher quality product?

(]

. Can there be any a prion reason for preferring one model to another? If so, what eniteria are relevant?
3. Can a given technical approach conform to more than one model?
Current wisdom asserts that a given technical approach (and the process model it conforms to) might be

more appropriate for: a particular class of applications (application domain specificity), a particular class of
systern architectures (structural specificity), or a class of organizational structures (organization specificity).

IBMSTARS task Is-13 11

The relationship of project process models to design approaches, methods, techniques, technology, and tools
is such that the process models are supported by these more specific items in specific situations.

2.2.2.3 Approaches, Methods, Techniques, and Tools

In support of project-oriented process modeling, chosen approaches (and subsequently methods, techniques,
and tools) carry out the objectives of that process model and are mapped onto one another. For example,
the developmental project approach in Cleanroom describes the separation of requirements, development,
and certification concerns inherited from the goals and objectives of the Cleanroom Engineering Life Cycle
Process Model.

Approach to software development:
A strategy for achieving the development of a software system in a way that conforms to some soft-

ware process model. An approach can be expanded into a more detailed approach.

A simple (highly abstract) example of an approach to software development is shown in Figure 3.

TRANSFORMATION
licati >—
NEED— “Concopi | ysiom [4—— USE
(AC) s)
VERIFICATION
-—

Figure 3. Example of an Approach to Software Development.

The example in Figure 3 immediately raises a number of questions about the representation of the model
(both syntax and semantics). For the graphical syntax questions arise about the meaning of a box, a line,
and an arrow. What are the rules for legally combining these symbols? What are the meanings of the terms
application concept (AC), operational system (OS), transformation, and verification used in the approach?
For example, AC might be a set of user scenarios or a requirements document; OS might be a functional
prototype. The term transformation might mean development and verification might mean testing the OS
against the requirements. The terms of the approach (which is also a model in the general sense) can only
be defined in the context of the broader process model goals and objectives.

Software development methods and tools support the application of approaches to software development.

Mecthod:
An explicit prescription for achieving an activity or set of activities required by an approach to software
development.

Methodology:
A study of methods. The term is often used incorrectly as # synonym for method.

Technique:

12 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

A systematic procedure by which a software engineering task is accomplished. Typically, a technique is
considered to be supportive of and subordinate to a method.

When looking at a specific method, further questions are in order: With what approaches is the method
consistent? How good is the method when it is compared with other methods consistent with the approach?
How much of the process does the method prescribe? How can the method be automated - that is, sup-
ported by a software tool?

Software tool:
A program or collection of programs that can support the application of a method or technique.

Although this definition does not exclude general-purpose tools, it does insist that tools can only be judged
by the extent to which they support methods, for example, CADRE Teamwork’s suppout for the DFD
(dataflow design) method. In addition, we are concerned with usability and efficiency. Is a given tool easy
for the intended user to use? Is it efficient compared with some other support for the same method? While
individual software tools are of undoubted value, coordinated collections of tools are attracting increasing
attention. These are termed software development environments, a term taken to be synonymous with the
terms programming support environments, project support environments, software engineering environments,
and integrated prograrmuming/project support environments.

We take the position that an unstructured bag of tools does not qualify as a software development environ-
ment. Thus, we define the term software development environment in the following way.

Softwarc development environment:
A coordinated collection of software tools organized and adapted to support some approach to soft-
ware development or conform to some software process model (sometimes called a software engi-
neering environment or SEE).

A software development environment (SDE) is useful to the extent that it is an improvement on an uncoor-
dinated collection of tools. It is possible for an SDE to support more than one approach or conform to
more than one process model.

Muiti-Project Process Management: [Further project-specific characteristics of interest are: visibility of key
subprocesses {(observable), a basis in frequent and evolving demonstrations of emerging functionality, contin-
uous customer/user involvement, iterative/incremental development, early participation of key life-cycle
stakeholders at all times, tailored appropriateness to specific devclopment situations, specification following
implementation, and flexibility over the life cycle. Several related technologics are emerging to support a
quality-driven process (¢.g., concurrent engineering, process management, intelligent groupware, Al-based
design, prototyping, and incremental development). When brought together with the goals of a quality-
driven process, these technologies can lead us to define a class of new software life cycle process models used
in the projects.

When a project process is viewed in the context of a total business process, a software development project
becomes an instance in the growth of a base of software assets. The basic principles of such a multi-project,
process-driven, software business philosophy are continuous software process improvement, process knowledge
definition, user/customer focus, commitment to software quality at all levels of an organization, teamwork,
investment in people, reuse, and, most important, customer/user satisfaction.

IBMESTARS lask IS-15 13

2.2.3 Software Process Enactment

The purpose of this section is to discuss languages and notations in which formal models of software proc-
esses could be represented and then enacted. The word “enacting” has been used instead of alternatives such
as executing or interpreting,. We wish to preserve the concept that the mechanism for running process
models is a symbiosis of human being and computers, and at the same time not to hint at particular roles for
either partner. Executing has strong connotations of machine execution; interpreting can denote activities in
man and machine which arc very different; enacting was chosen as a neutral and previously unadopted term.

Enactability simply means that human beings involved in the software process receive computer guidance
and assistance in what is an extremely complex activity. Put another way, models are not just used “off-
line,” as a means of studying and defining processes, but also “on-line” while processes are being carried out,
as a means of directing, controlling, monitoring, and instrumenting them. To help clarify what enactment is
not, we assert that it is netther (a) writing programs that wholly mechanize software production, or (b)
writing programs that wholly prescribe what human participants in the process are to do.

Process enactments are written to define possible (allowable) patterns of behavior between non deterministic
human beings and systems constructed of computer programs. Modeling and programming the software
process is an experimental testbed for modeling and programming human-computer activity in general, for
introducing a new and potentially much more highly productive way of software system-building.

2.2.31 Enactment Formalisms

Language 1s a central issue. There is a “horse and cart” problem here: to find out what language features we
neced, we need to write enactable process models; to write creative models, we need the appropriate language
features. An issue is that tradeoff between the expressive power of a notation and the ability to reason about
or analyze the process model beforehand. A language design tradeoff involves subsetting expressive power of
a notation to prove some useful properties about the process, or, conversely, providing more expressive
power but limiting the ability to reason about the process.

A prescriptive interpretation of a Process Enactment Language is essential since it is desirable to use the
language to express plans (i.e., descriptions of processes that are intended to take place in the future).
Prescriptive means that the process is laid down as a guide or rule of action. Plans can cither be followed by
choice or enforced, but they are prescriptive and sometimes proscriptive (that is those things that are for-
bidden are described as well). The prescriptive interpretation of a language requires some form of interpreter.

2.2.3.2 Enactment Architectures

Thus section focuses on the mechanisms needed to enact software process models from tiie viewpoint of
three key aspects of architectures: information, operations, and operators (i.c., entities that apply operations
to information). The interactions of these aspects, of course, are important as well. The operations view of
process modeling is a traditional activity of Project Management developing a network of activities for their
project, at an appropriate level of granularity. The operator view of process modeling takes the personnel
roles that will be required for a development effort and allocates the activities or process tasks identified to
approprate personnel roles. The process information base view associates the data objects that both the
activity process view and the role process view require to permit process cnactment.

There 1s no single best approach for modeling processes for enactment, but to enact a process, all three views
of process are required. A logical approach to process modeling 1s to perform “activity-oriented” process
modcling to identify threads of project activities along with “role-onented” process modeling to allocate these
activities to project roles, while at all times identifying required data objects. It is probably best to develop
process models incrementally and to plan to examine all three views within cach increment.

T4 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

Process Information Base: When enacted, executing p-rocess models must manipulate information. The
information differs from that needed for product programs in content, in structure, and in the properties of
the supporting operations. The information base required to support enactable process models includes
three separate kinds of information. The first comprises the process data, which consist of information
relating to the execution of the process model (e.g., lists of project activities to schedule or plan). The
second is process state, which consists of the internal state of the executing process model (e.g., a process
program counter). The third comprises the product data, which consist of the project documents (e.g.,
schedules, budgets, module specifications, code, etc.)

The list of information base requirements includes: objects of varying sizes, varying degrees of persistence,
nested transactions, very long transactions, complex and programmable relations among objects, triggering
mechanisms, automatic inferencing mechanisms, dynamic types of schemas, multi-user sharing with associ-
ated locking mechanisms, versioning, powerful query languages, partitioning and view mechanisms, and tol-
erance of inconsistency. An information base for process models must also support multiple, dynamic,
programmable notions of consistency.

Operation Classes: The execution of process models requires several classes of operations. The two most
familiar operations are control flow and composition. Control flow is a well-understood notion. Composi-
tion means arranging lower-level elements into a higher-level structure, for example, as in the way P10742
process fragments are composed into a process model. Two other operations -- instantiation and instrumen-
tation -- are both essential to enacting process models and different from operations available in most pro-
gramming languages. Instantiation is binding an abstract notion to a concrete instance. In programming
languages, abstract data types are instantiated to concrete representations and implementations, programs are
instantiated into exccuting processes, etc. Instantiation is more important in the context of enacting process
models. Instrumentation is the way in which mechanisms are applied to carry out the execution.
Instantiation can also be taken to mean the way metrics are attached to measure process attnibutes.

Instantiation is nccessary to get the dynamic and flexible characteristic demanded by executing process
models. Many aspects of process models require instantiation: activities can be instantiated in various ways,
depending on whether they will be performed manually by people, automatically by tools, or semi-
automatically by a combination of people and tools; the next event to execute can be dynamically
instantiated according to the current state of the process and (perhaps) directives by users; unusual conds-
tions can be handled by instantiating exception handlers; and so on. Second, instantiation nced not be com-
plete, as in most product programming languages. This is so in part because of the dynamic nature of
executing process modcls and in part because of the expected long execution time of process models. The
dynamic property demands instantiation because not all decisions can or should be made statically.

Operator Types: Operators are the entitics that apply operations to information. For product programs
only the hardware (or a virtualization of hardware) actually performs manipulations. For process enactments
however, two operators exist: (1) the real and virtual hardware and (2) pcople. It 1s perhaps this added
operator that most clearly distinguishes enactable process models from product programs. People must be
considered to be operators because there are many fundamental operations that must be performed that
cannot be performed automatically. For instance, during execution of a process enactment, a manager may
be “invoked” to sclect a particular schedule or to bind a particular programmer and task together. Some of
these, such as defining and selecting a schedule. can take a long time and can have significant consequences;
hence, the notion s really quite different from stmply entering data to a product program.

2 The T E-PIO7S standard for software lifecvele process is a draft standard which was prepired by the Software Tife
Cycle Processes Working Group of the Software Engincering Standards Subcommittee under the sponsorship of the
Technical Committee on Software I ngineering of the IEEE Computer Society.

IBM STARS TFask 1815 15

2.2.3.3 Enactment System Requirements

Ideally, to support the manipulation of related process model aspects, a system for process enactment must
contain support for the following capabilities:

16

Products: identifiable bodies of information, describable by decomposition to primitive types, or in
terms of a class system (inhentance, specialization).

Activities: the transformation of inputs to outputs, describable in terms of inputs, outputs, preconditions
and postconditions; conditions may refer to some global “state.” Conventional “project management”
features, such as durations of activities and date information, tends to be variable, and means to express
vanability need to be part of the language.

Agents: things that perform activities; these may be human or computer-based; particular human agents
may operate in a number of different roles; agents may have different “views” of the process. Presumably
the preconditions of an activity may refer to the capabilitics of an agent, but there has been little thought
of how this might be represented. An activity description needs to indicate the capabilities required of
the performing agent; such requircments need to be related in some way to the functional definition of
an activity. Allocating agents to activities requires a “type system” for resources and should consider
what capabilities would be needed for agents (determined by looking at “natural” processes and the
human use of tools).

Control flow: Composition of activity instances using conventional notions of sequence; sclection and
iteration or Prolog-style backtracking.

Communication: Synchronization of activities and transfer of products between agents; notions of
dialogue and commitment between agents. Modeling dialogue and cooperation between agents appears
to provide an alternative approach to techniques such as dataflow and state-transition modeling. Coor-
dination technology may serve as a useful approach here.

Decisions: Choices made in the light of some “goal”; creative actions. The notion of “goal” support
needs more investigation. We may well have goals that relate to properties of the process itself (such as
duration, resource utilization, dclivery schedule, public relations), as well as goals that relate to propertics
of products. The way that decisions are made in the light of goals and the non determinism that this
implies need to be looked at.

Long-term execution: Process enactments are expected to run for long times and they are likely to
change while they are running. The effects of persistence and change are not currently well understood,
and there is little in current languages or programming systems to provide guidance. For example, if the
enactment changes, how is a trace of execution from the old version to be interpreted.

Concurrency and communication: Process enactments will be highly concurrent, and communication
among agents and processes 1s a central issue. This will require more support than is currently available.

Nondeterminism: Although process enactments will have to deal with the traditional form of
nondeterminism (i.e., having several things that can be done at a time), the greater source of
nondeterminism will be due to the human factor.

Views: Multiple views or representations of process models will be necessary to avoid the problem of
having to read the “code” to understand the process. Three different types of views are needed: (1)
views as projections that present certain information to the user while hiding the other information, (2)
views as different ways of representing the same information to the user (e.g., graphical and textual), and
(3) views to support navigation (c.g. scoping) over a defined hicrarchy of levels of process abstractions.

The term “view” has been used in two different ways: (1) to mean the restriction of an agent’s “domain
of discourse” 1o some part of the process (this 1s like the database notion of view), and (2) to mean the
diffrent “dimensions” of a process - for example, technical, organizational. and managenial dimensions.

Using different views as an aid to understanding the process implies that it should also be possible to use
those views to change the model when necessary. The problems with mampulating base table data via

STARS Task 1815 Software Process Tools and Techniques Fyvaluation Report Version 1.0

views are well known in the database community. Working backward from a modified view to change
the base information can be very difficult. An alternative is to store each view explicitly, but there are
still problems in maintaining consistency among the vanous views.

Role Support: It has been proposed that there is a close relationship between role and view, with a view
plus a role defining a “virtual agent.” Important concepts are: role “type” (i.e., manager), role “instance”
(i.€., the manager of a particular project), and role “occupancy” (i.e., the binding of an agent to a role
instance). Further, the role is a way to assemble a view of the processes (tasks or activities) for which a
particular role type is responsible.

Rules: Rules can be used, in one form or another, to specify what is to occur. Triggering (i.e., when do
rules actually fire) is an important issue to be explored. Accessibility of the rules for understanding the
process is also an important issue. Both static and dynamic accessibility are necessary. Static accessi-
bility involves understanding individual rules. Dynamic accessibility involves understanding what actions
a given set of rules produce or. conversely, what rules were used to produces a given action.

Sharing and containment: Complex documents may contain many objects, and an object may be shared
among several different documents. This poses significant problems for multiple agents who share access
to these objects and have the ability to make changes in them. Traditional database notions of consist-
ency and commitment are not likely to be sufficient.

Hierarchy and decomposition: The (possibly concurrent) existence of subactivities and their parents will
require special language features. For example, it may be necessary for a process or activity to “know”
that it has a parent or concurrent siblings.

Types: Process enactments will require rich type systems to describe the various artifacts produced in
the software process as well as the relationships between them. It is not the artifacts themselves but the
relationships between them that provide meaning, and it may be desirable to include relationships among
the types in the type definition. Language features for process enactment will also need to support type
evolution -- changes in the definition of the type during the process.

Extensibility: A programming system for process enactment will need the ability to accommodate new
ideas and new notions of process as they change.

Reuse: What does it mean to reuse a process enactment and how do we do it? A number of potential
approaches to reusing process components include: development of proper abstractions, appropriate
levels of granularity, late binding, and development of “generic” programs or program fragments. Reuse
should not be limited to the code process enactments; specifications and designs are also potentially reus-
able.

Process change: The issue of process dynamics is concerned with aspects of how things change. There
are several degrees of change in the process model life cycle: changing instances, changing types, type
systems, etc. Another important aspect is that of process generation and process modification while the
process is cxecuting in real time, either by sclf-modification or external modification.

Dynamism is the ability to change the enactment while it is executing. In a model without dynamic
character, a trace of execution of the model would contain only components that were built into the
original model. In a dynamic model, an execution trace might include components that were not in the
original model. The minimum amount of dynamism required to support process cnactment is type
instantiation and process instantiation. One way of handling changes is to delay the binding or
instantiation until as late as possible.

Several questions related to dynamism in the software process are unresolved. What 1s the source of
dynamism in process models? Modifications might, for example, be made in response to exceptions, or they
might be related to higher-level goals such as optimization of the process. Should process enactments be
sclf-modifying. modified by humans, or both? Self-modification can be dangerous; there 1s the need to
handle certain conditions (e.g.. exceptions) automatically. Two related questions are: How much dynamism
is desirable in a process enactment? How much is necessary?

IBNISTARS Task 1815 17

2.2.3.4 Engineering Enactable Models

The following tradeoffs must be considered in developing enactable process models:

1. A suitable compromise must be found to settle the tension between what should be included in the
enactment mechanism and what should be in the associated process information base.

2. The “proper” level for the supporting enactment mechanism must be determined.
3. Instantiation and instrumentation are requirements for any enactment mechanism.

4. The requirements of the information base must be carefully defined, and must, in particular, permit spe-
cific forms of inconsistent data to be retained.

5. The problems of how people interact with enacted process models are key; this includes the social 1ssues,
the form of the human-computer interface, buy-in, cultural fit, etc.

There is a life cycle for software processes analogous to the life cycle for software products. Requirements
are formally or informally defined, the processes are designed through scveral levels of refinement, process
enactments are constructed, analyzed, tested and debugged, processes have components, versions and config-
urations that cvolve over time, and process components may be reused across a range of software and other
kinds of development projects. There are meta processes that guide this life cycle.

Requirements: Deciding what can be expressed in a process model and what cannot happens during the
requirements phase. This may be with respect to a particular formalism selected a priori, or it may be pos-
sible to put off formalism selection until the design or even construction phase. Certain requirements cut
across essentially all processes, such as hierarchy, concurrency, and nondeterminism. Some requirements
simply cannot be met within a formalism. One view holds that proctss models are primarily theoretical
tools for understanding processes, so computability, decidability, and so on are not prerequisites. Another
seemingly opposing view holds that our understanding of some phases of the software process is too imma-
ture for modeling - in the context of actually enacting the models.

Design: Devising a means, within the chosen formalism, for meeting the requirements happens during
design. This includes breaking the overall process into subparts (sometimes referred to as architecture),
developing data and process models, etc. Trace the history of actual projects and then design models by
generalizing from the components of these traces. The State Change Architecture approach < 26> provides
components of a model statically, but the links between the components are constructed dynamically during
enactment of the process. Process prototyping merges design and construction phases to some extent by
advocating, with a distinct concem for evolution and controlling the impact of change.

Construction: Actually writing the process model or program within some formalism is done during con-
struction. We can imagine the application of various programming tools such as language-based editors,
cross-reference tools, ctc. (e.g., Aspects” use of windows, views, and defaults.) Artificial intelligence tech-
nology can be applied to reasoning about a process with respect to its “purpose,” that is, the goal of the
process in the particular context. Qther advanced tools, including specification gencrators and analyzers,
functional simulators and hypertext can be employed. For large processes there will be models that have to
be composed. [nactable models are then translated into some internal form appropnate for the formalism.
‘The notion of a software process architecture has been defined to support adoption of common technology
ACTOSS Processes.

Testing and Debugging: Testing can be done via simulation; e.g., an activity coordimation assistant that
provides a testbed for new policies. Alternatively, the only testing may be by use in actual projects. Debug-
@ing can be done off-line while a project is in progress. A tool for experimenting with process programs
could be developed, in the form of dialogues, by running them backwards and forwards, directly modifving
their stores and so on.

18 STARS Task IS 15 Software Process Tools and Fechniques Fvaluation Report Version 1.0
q f

Evolution: Processes will evolve over time. The problem of change propagation exists: updating the
behavior of software development environments and the contents of software artifact databascs to reflect
changes in enacted process models. This is a distinct problem that deals with actual conversion of existing
artifacts and perhaps existing tools, as well as the retraining of users.

Reuse: Process modeling would not be very effective if new processes had to be constructed for every soft-
ware project. If one views the environment and the model as o thogonal, this may lead to greater opportu-
nities for reuse since the model is not tied to a particular enviror.. 2nt. Reuse activities include selection
adaptation, assembly, cataloguing, and assessment that apply equally well to reuse of software components
and reuse of subparts of software processes.

2.2.4 Process Improvement

By defining processes for developing systems, of which software may be a critical part, an organization pos-
sesses a tool to ensure great consistency in the way systems and software will be developed. When an organ-
ization has defined, at an organization level, a process for supporting software development, the organization
has reached the level of 3 on the SEI Software Process Maturity Capability Model. However, as the defi-
nition of processes for developing software is a human activity, defined processes may be suboptimai and in
need of improvement. Further, a good process may deteriorate over time if it is not continually examined
with respect to the technology base to support software development or the changes made in the corporate
culture that affects software development. It is possible to define a suboptimal process that may have a
less-than-positive impact on the organization that uses it, possibly worse than having no process defined at
all. Thus, there is a need to constantly monitor and analyze processes to ensure that if they are in need of
improvement, they will be improved. Processes can only really be tested through use. Some tools such as
the Software Process Management Systern (SPMS) permit process engineers to analyze the performance of a
defined process, before its deployment for use. However, user experience and measuring the results of the
use of process enable us to improve the process.

2.2.5 Maetrics

Quantitative measurement of the results of processes, and the processes themselves, provides the basic ingre-
dicnts for studying trends and cxplaining qualitative observations about processes such as “I don’t know
exactly what is wrong with this process, but it appears to waste a lot of my time, and just doesn’t work very
well for me.” Lord Kelvin is attributed with expressing the idea that ‘if it cannot be measured, it cannot be
improved.” By establishing metrics, associating them with an organization’s process, and analyzing them for
indicators where processes require improvement, an organization can achicve an SE] level 4 on the Software
Process Maturity Capability Model.

There are two basic categories of metrics that assist process engincers in analyzing and improving processes,
namely, product metrics and process metrics. Product metrics are a measure of the quality of a product
produced by a process. Thus product metrics are an indirect indicator of how a process is working. If the
product being produced is suboptimal, so must the process be that was used to produce the product.
Process metrics are measurements established and taken directly from the performance of process tasks. In
this way, process metnics are a direct indicator of process performance. We shall briefly describe a scheme
for product metrics and a scheme for process metrics.

To prevent metries analysis from becoming a draconian management tool, metnics, both product and

process, must be collected and analyzed at an organization level. Data collection must be geared to col-
lecting aggregate trends and analyzed as such, and management misuse of them must be avoided.

IBM STARS Task 1S5 19

2.2.5.1 Product Metrics

Product metrics are used to examine factors associated with the products that can be analyzed to identify
aggregate trends to isolate and correct process problems. Key to effective product metric collection and anal-
ysis for process improvement is the development of an effective measurement model that identifies the cni-
teria for metric selection and the way the metrics will be employed to support process improvermnent. Some
of the requirements for an effective measurement model < 38> for a process management capability include
the following criteria:

1. Measurement coverage should include the architectural levels required by the executable process model
(e.g., System, CSCI, CSC, CSU).

2. The model should provide for aggregation of measurements from the low levels of software components
to larger components.

Measurements should cover phases of the life cycle (e.g., design, coding, etc.).
Measurements should cover documentation and software components.
Measurements should be related to intuitively meaningful concepts of quality.
Measurements must be explicit so that they may be represented in process models.

Implementation of the measurement model must be tailorable and extensible.

® N e

Ideally, historical data concerning the values of the measurements should be available to aid in their
interpretation.

The term measurement model refers to the relationships of individual metrics to the software development
process.

Measurements must be available for each level of the software component (e.g., CSCI) that is to be created
by the executable process model. This enables the use of these measurements in the validation task, which
evaluates the success of the process. Because the quality of a software component is partially determined by
the quality of its parts, one must aggregate the values of measurements of the parts to assist in determining
the quality of the larger component.

Mcasurements must also be available over the domain of the software component. Different measurements
are appropriate at different points in the life cycle of a software component. Documentation is a major
deliverable item in software development. The quality of this deliverable has a major impact in the long-
term costs and quality of the software product. Measurements of the quality of the documentation must
also be available within the measurement model. The measurements in the model must be related to intui-
tive concepts of quality.

Reusability plays a large role in the STARS SFLC process model. Other intuitive concepts, such as porta-
bility, modulanty, and generality, are related to reusability,

The measurement model must be related to abstract notions so that one may intuitively grasp what is being
measured.

Even though the measurements must be related to abstract concepts, the measurements themselves must be
explicit so that they may be represented within the process model. This implies that very specific questions
or mcasurements must be present in the model rather than very general questions (c.g., Is the CSC free of
microcode instructions? vs. Is the CSC of high quality?). The measurement scale may vary from nominal
(e.g., yes vs. no answers) to numbers along a continuous scale. It 1s important that the questions and the
formulas be known and available for use by the process model.

20 STARS lask IS-13 Software Process Tools and Fechniques Exatuation Report Version 1.0

As Ross has noted <29 >, metric collection can drive model refinement. It is likely that as the process
models evolve, the measurement model will also evolve. The implementation of the measurement model
should be extensible and tailorable so that this evolution may take place.

The RADC Quality Framework: The RADC Quality Framework < 40> describes a quality model in which
a hierarchical relationship exists between a user-oriented quality factor at the top level and software oriented
attributes at the second and third levels. Figure 4 represents a portion of this model with the factor effi-
ciency. Figure 5 on page 22 shows the relationship of the factors and criteria in the framework. The metric
elements (the specific questions applied to a project under development to assess and predict quality) are
applied at various levels of software architecture and at various points in the software development life cycle.
By using the framework, one can define the data that must be gathered on specific architectural units at
specific points in the life cycle. The framework provides a series of formulas that relate the data to specific
critenia to be measured and finally to the actual factors themselves. The factors that can be selected by a
user and their relationships to various criteria are shown in Table 2.

Factors are
Efticlency - management
oriented
views of Product
Quality.
Ettectiveness - Etfectiveness - Effectiveness - Criteria are
Communication Processing Storage - SOftware oriented
sttributes which
/ \ provide quality.
Motrics are quantitative
EC.1 EP.1 EP.2 EP.2 ~&- noasures of those
attributes.
Communication Processing Data Usage Data Usage
Eftectiveness Eltectiveness Etfectiveness Eftectiveness

Figure 4. Portion of the RADC Quality Framework.

The RADC quality framework, selected for use in SPMS, is based on the need for a measurement model
and the belief that the factors and critenia represent reasonable concerns in the software development process.
There is no clear cvidence that the specific measurements themselves are optimal, nor is there any evidence
to indicate what panticular values of specific measurements should give one confidence or indicate an area
that should be of concern. Although the RADC Quality Framework does not meet the requirements for a
measurement model discussed in this section, it is extremely uscful in providing an imitial set of measure-
ments that could be used in relation to executable process models. The RADC Quality Framework 1s
explicit and hierarchical and is related to various software process phases. This meets the other requirements
for a measurement model. Use of the RADC framework in con:unction with the knowledge-base represen-
tation provides the detail needed for a computer representation of a software process model to be executed.

IBM STARS Task 1S-15 21

SOFTWARE QUALITY FRAMEWORK FACTOR

CRITERION

Maintainability

Efficiency
" Integrity
Correctness
I verifiabirity
| Expandabitity

Il survivabitiny
|| Flexibility

il Usabitity

e
Accuracy

|| Intcroperability

" Portability

" Reusability

> || Reliability

Anomaly Management

Autonomy

bR Ll Lo

Distributedness

»

Effectiveness—Communication

s

Effectiveness—Processing

Effectiveness—Storage X

Operability X

Reconfigurability X

System Accessibility X

Trainine X

Completeness X

»
»”

Consistency

Traceability X

Visibility XiX

Application Independence

Augmentability X

Commonality

Document Accessibility

>

Functional Overlap

Functional Scope

Generality X

b

Indcpendence

System Clarity

> 1A

System Compatibility

Virtualitv

Modularity X XX

P

Sclf-Descriptiveness X

A

PR PR P

Simplicity X X1t X

Figure 5. Software Quality Framework Factors and Associated Criteria.

22 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

The RACD quality measurements, in conjunction with explicit criteria for determining the success or failure
of a quality goal, allow their use as validations for the success or failure of processes within the executing
process model.

It should be noted that there are other sources of product metrics other than the RACD Quality Framework
metncs. The sclection of product metrics depends on the goals for a project or organization’s process
improvement goals and should be selected to support those goals.

2.2.5.2 Process Metrics

Venkat Ashok and Bruce Reed of UES have identified a set of metric functions and attributes for incorpo-
ration into the Knowledee-Integration Shell product <28 > . ‘These metnic functions and attnibutes can be
used to record and accumulate process information for the process tasks of specific user roles. The K[Shell
Process Metrics represent an example of process metrics that can be used for analysis of aggregate trends.
However, it 1s important to recognize that there arc other process metncs that could be employed for anal-
ysis.

By providing a set of shell functions, the start and stop tunes for each measured activity can be stored in
predefined information frames and attributes. From these information frames and attnbutes, process metrics
can be displayed, both in graphical and text formats. The following metrics have been identified to
parameterize the behavior of proposed K1 Shell process metrics:

1. QUEUE: QUELUL is used to measure the time from when a work unit 1s created and ready for proc-
essing until the time when work is begun on that umit. Thus if queue time is greater than the acceptable
aggregate threshold, the process task should be examined.

2. WAIT: After a role (ROLE A) has begun to process a work unit, a situation may anse where .hat role
(ROLE A) notifies another role (ROLE B) of processing required on the current work unit. The time
that the first role (ROLE A) waits on the other role (ROLE B) to complete its job is considered WAIT
time. Again, excessive wait times may mean the process should be examined.

3. PERFORM: PERFORM represents the ti-ne that a role spends actively processing a work unit. Exces-
sive amounts of time spent on a work unit may indicate a process problem.

4. IDLE: Any time a role voluntarily suspends work on a unit, e.g., lunch break, 1s recorded as IDLE
time.

5. SPAN: The total time clapsed from when a role begins processing a work unit until it is completed.

6. ITEM: A genenc metric that can be used in any manner. Associated with all the above metrics ar2 the
“actions” that can be performed on them. These actions are parameters of the metnic functions and affect
how the functions act upon the metncs.

For cach of the above metrics there 1s a set of predefined attributes used to store the start, stop. and accumu-
lated times. The action parameters determine which of and how the attnibutes are set. These action parame-
WIS are:

1. START: Sets the start attnbute of the specified metne to the current time (in seconds).

2. STOP: Sets the stop attribute of *he specified metnie to the current time (in seconds).

LACCUM: Caleulates the ditference in seconds between the start and stop times for the spectfied mietrie
and adds that value to the current value of the “accum” winbute of the specified metrie.

From the analysis of selected process metnies tor cach process or set of process tasks, v Taable data on the
execution of the processes themselves can be used to wdentify trends, both positive and negative, that can be
used to support process improvement.

[V

IBVESTARS Jask Is 15 2

Intentionally left blank.

24 STARS Task 1515 Software Process Tools and Techniques Fvaluation Report Version 1.0

3.0 STARS IS-15 Task Organization

IBM STARS Task IS-15 was organized into three major tasks to satisfy our process objectives. These three
tasks were:

1. Software Process Representation
2. Software Process Enactment - Cleanroom Software Process Case Study
3. Process Products Coexistence Strategy.

The “Software Process Representation” task comprised three subtasks:

1. SPMS Evaluation Prototype Demonstration and Training - to demonstrate the SPMS evaluation proto-
type, to gain interest and commercial support for cofunding during the “T” increment, and to prepare
materials for training the “SEI/STARS Process Asset Acquisition” group in the use of the SPMS Evalu-
ation Prototype.

2. SPMS RISC System/6000 Port Analysis and Planning - to assess the feasibility of porting the Apple
Macintosh-based SPMS prototype onto the IBM STARS SEE platform, namely the IBM RISC
System/6000 running under AlX, and to prepare a plan for doing so.

3. Process Representation Using Box Structures - to examine the use of box structure notation as a candi-
date notation for recording process knowledge.

The Software Process Enactment - Cleanroom Software Process Case Study comprised two subtasks:

1. Case Study Specification and Validation - to define the "Cleanroom Software Process Case Study”
problem, to specify a concept of operations for a system to support the Cleanroom Engineering Software
Development Process (the "Cleanroom Engineering Process Assistant” Specification) and validate the
implemented prototype against the process and specification prepared.

2. Case Study Implementation - to implement the “Cleanroom Software Process Case Study” Problem as
required by the “Cleanroom Enginrering Protoype Assistant Specification.”

The Process Products Coexistance Strategy Task involved examining how seiccted products -- KI Shell, HP
SoftBench and SPMS, each of which provides a needed software process management capability -- could be
integrated to provide a unique software process management capability.

Figure 6 on page 26 iliustrates the IBM STARS “S” Increment Process Task Team and identifies all partic-
ipating team members.

STARS IS15 Task Organization 23

(S3N) XOHSV A
(s3n) @33y ‘g

(S3N) HLYNWVH 'H
(S3N) NVHLYNVWVYY 1
:NOILVLNIW3dWI
AQNLS ASVD

(1L3S) NVIFAXVYHONON 'V

(13S) 8402 'H 'H
:SIHNLONYLS X08 DNISN
NOILVLIN3S3IH43Y
$S3004d

NOILVDIJID3dS AGNLS 3ASVI

(13S) NOSSIS 'H
(133) NVIPGAVHONON 'V

(DIvS) NVHINIT 'V
(01¥S) 134Y3aL T

(DIvS) SdITIHd 'S
'ONINNVd

ANV SISATTVNY 1HOd
0009/W3LSAS OSIH SWdS

(138) 9800 'H'H
! NOILVAITVA ANV

(DIvS) 1N3uyaL r

(S3IN) NVHLYNYWVYH T
(OIVS) SdINTIHd °S

(DIvS) HANSVYYN ‘H

(Wa!) L13 'H'M
:AD3ALVHIS FONILSIXI0D
$12NA0Yd $S3J0Hd

(Wa) 113 'H'm

:AQNLS 3ASVI

$S300Hd IHVMLI0S
WOOHNVY3TO — LNIWLOVNI
§S300Hd 3HVM140S

(DIvS) NVH3ANIN 'V
(QIV¥S) 134HaL
(DIVS) HINSVYHN 'H

‘ONINIVHL

ANV NOILVHLSNOW3A
3dA10104Hd
NOILVNTIVAI SNAS

(13S) 8800 'H 'H
(DIVS) HINSVHUN 'H
:NOILVLN3S3Hd3Y

S$S3D0Hd IHYMLH0S

(wWal) 113 'H'M
:43aval MSVL

Figure 6. IBM STARS “S” Increment Process Task Team.

26 STARS Task IS-15 Software Process Tools and Techniques Fvaluation Report Version 1.0

4.0 STARS 1IS-15 Candidate Tool Acquisition

This section describes the tools selected to support STARS Task 1S-15 and describes constraints on the
selection of tools, as well as the rationale for tool selection.

4.1 Constraints on Tool Selection

1. IBM examined several candidate tools to supporting software process modeling and enactment.
2. Constraint critena on tool selection:

a. Availability to support “S” increment work

b. Potential availability of tool for the 1993 STARS SEE

c¢. Product available currently as commercial off-the-shelf (COTS) or as a stable prototype

d. Potential for migration to multiple platforms supporting POSIX.

4.2 Tool Selection for Providing a Software Process Modeling
Capability

IBM has sclected the Software Process Management System (SPMS) as one of its candidates to support
software process modeling. SPMS is one of the few tools designed to support the concept of modeling soft-
ware process and is why IBM has decided to examine how to migrate SPMS to its RISC System/6000 plat-
form.

Existing CASE tools that can be used to model aspects of process, support process modeling in a non-
integrated fashion. Although some CASE tools do support the simulation execution of systems, their uscful-
ness as tools for process engineers 1s somewhat limited. System simulation capabilities for tools such as
STATEMATE and TEAMWORK/SIM are intended to simulate the execution of system designs. Although
process models can correctly be viewed as process systems, the simulation of process models requires a dif-
ferent “look and feel” than do other system designs in that humans, such as program managers and engincers,
have to be modecled as process agents (enactors of process). SPMS was designed to be a tool for process
enginecrs to model and simulate processes. Further SPMS was an attractive candidate for the following
reasons:

1. SPMS’s availability to support “S” increment work

The SPMS prototype is available to support process modeling experiments on an Apple Macintosh plat-
form. Further, it serves as an excellent “requirements” prototype for migrating SPMS to the IBM RISC
System/6000.

The ability to make SPMS available for the 1993 STARS SEL

t9

The Software Process Modeling System was the most mature software process modeling capability that
could potentially meet the objectives of supporting reuse-based process system modeling.

The SPMS prototype was designed to take advantage of popular commercial-off-the-shelf tools that can
be found on a number of UNIX workstation platforms including the IBM RISC System 6000 under
AIX and SUN workstations under BSD 4.6. These tools include Oracle and NFXPERT Object.

3. SPMS s currently available as a stable prototype, which has the potential to become a commercial off-
the-shelf product.

STARS IS 15 Candidate Tool Acquisition 27

SPMS is currently a stable prototype. The SEI is planning to evaluate SPMS for use in support of their
process modeling and asset capture activities.

4. Potential for migration to multiple platforms supporting POSIX.

SPMS was designed around integrating COTS products that are generally available on POSIX-compliant
UNIX platforms. SPMS will be developed employ:ng industry standards, such as X-Windows and
OSF/Motif and the COTS products selected. Application integration toolkits, such as the services pro-
vided by HP SoftBench, may differ from platform to platform, and represent the area where SPMS
custormization for each unique platform will be required.

The decision was made to begin assessing what it would take to migrate the existing SPMS capability to the
[BM RISC System/6000 to provide the IBM SEE with a too! to support process modeling and process
enactment. In summary, this decision was based on the fact that SPMS has alrcady demonstrated its ability
to support process modeling and process simulation, and SPMS holds the potential to support process mos-
itoring.

For further information on the Software Process Management System, please refer to the following STARS
reports:

1. "4 Software Process Management System for the STARS Software First Life Cycle,” IBM STARS
Deliverable CDRL Number 3016, 29 October 1990.

2. "User's Manual for SPMS,” IBM STARS Deliverable CDRL Number 3118, 17 June 1991.

4.3 Tool Selection for Providing a Software Process Enactment
Capability

IBM sclected KI Shell (Knowledge Integration Shell) to support STARS software process enactment exper-
iments. KI Shell is one of the more mature software process enactment capabilities available as a commer-
cial product. It is available for immediate use on an IBM RISC System/6000. Further, UES, the developer
of KI Shell, is consulting with IBM AIX-CASE planners on software process management capabilitics
desired for future releases of IBM’s AIX-CASE.

1. Availability to support “S” increment work

K1 Shell is the only capability for performing process enactment experiments on an IBM RISC
Systemn/6000 platform. Because K1 Shell has several years of testing behind it, IBM has selected it as its
candidate software process enactment tool to support its STARS “S” increment work and at the same
time, to evaluate its potential for supporting the 1993 STARS SEE.

2. Potential availability of tool for the 1993 STARS SEE

KI Shell is a commercially available product that has had significant use in implementing manufacturing
processes and some cxperience in supporting software processes.

Work 1s currently going on to examine making K1 Shell, PCTLE-compliant to work with existing
PCTE-based SEE frameworks.

3. Product available currently as COTS or a stable prototvpe

KT Shell is commercially available. Further. based on the “Cleanroom Software Process Case Study”
unplementation work, several ideas have emerged 1o improve K1 Shell's ability to support software
process cnactment.

KT Shell has been used successfully to inplement a vanety of manufacturing processes. Background
utformation about KI Shell will be provided in the next section.

4. Potential tor migration to multiple platforms supporting POSIX.

28 STARS lask I$-13 Software Process Tools and I echniques Fyvaluation Report Version 1.0

K1 Shell is a commercially-available product for the IBM RISC System/6000 running under AIX. It is
also available of the following platforms:

+ HP 9000 under HP/UX
» SUN 3 under SUN/OS.

Further, porting the KI Shell to other UNIX environments can be accomplished in a one- to three-
month time frame. This is based on the port of KI Shell from the IBM PC/RT AIX implementation to
the following UNIX versions:

« HP/UX - 2 person months
» SUN/OS - 3 person months
* AIX - 1 person week.

STARS IS-15 Candidate Tool Acquisition 29

Intentionally left blank.

30 STARS Task IS-15 Software Process lLools and ‘Techniques Fvaluation Report Version 1.0

5.0 The Knowledge-Based Integration Shell

The KI Shell (Knowledge-Based Integration Shell) is a commercially available process execution and control
shell. This shell reflects the process-based integration concepts and was commercialized using Phase 11 SBIR
funding from the Air Force? as well as other sources. The KI Shell process definition and enaction mech-
anisms have been tested and can be viewed at the McDonnell Douglas’s Team Columbus production site
where KI Shell is used for improving the productivity of complex manufacturing processes involving multiple
roles. At Team Columbus, the use of KI Shell demonstrates how the STARS vision of network-based
collaborative development can been achieved.

Under the “S” Increment of the STARS Program the IBM STARS S-15 Case Study Implementation Team
employed KI Shell to support process modeling and enaction. As determined in the IS-15 increment, the Kl
Shell currently does not have a direct competitor in the IBM/AIX market. Further, during the “S” incre-

ment, the feasibility of using the KI Shell to model and enact processes, such as the Cleanroom Process, has
been demonstrated by the IBM STARS Team.

The UES staff on the IBM STARS S-15 Case Study Implementation Team has a twelve-year history of
research and development in problem areas directly or indirectly related to those of STARS. UES has devel-
oped, under contract to the USAF ManTech Program, and commercialized a unique object-based meta
system -- the KI Shell -- which can take any process and method description and enact it to provide active
support for any process, including software engincering processes.

5.1 Kl Shell View of Process Technology

Process related technologies include process modeling, process simulation, process management, and process
enaction. The KI Shell features support Process Modeling, Process Enactment, and some aspects of Process
Management. These features have been developed and validated through extensive application in concur-
reat, collaborative engincerning.

Process-related technologies for collaborative work flow must provide features for at least four related aspects
of business/technical work-flow processes based on the organization:

» Generie Process Modeling to acquire and specify the process knowledge necessary to perform the enter-
prise activities. This includes the ability to specify enterprise roles and responsibilities (activities that
must be completed by a role), relationships between roles and the external views of functions and infor-
mation necessary to perform individual activitics.

* Process Simulation to determine precisely how different activities in a specific model consume resources
over time and, thus, to identify bottlenecks and arcas that nced attention for continuous process
improvement.

» Process Enactment to provide decision support and to assist in completing each activity in a model by
providing information on a need-to-know basts to make decisions. using operations to determine the
external view, and recording key decistons.

o Process Managemen? to provide a management view of the actual status of decisions with respect to
cach activity in the work-flow process by which product information 1s produced. Project Management
15 also an aspect of this, as 1t 1s necessary to plan or replan the use of resources for different activities.

3 OUES contract under Phase 1 SBIR.

The Knowledye-Based Integration Shell 31

The KI Shell Development Environment allows the modeling of a method. A KI Shell Method is a model
or description of roles, activities that constitute the work-flow process that must be completed by each role,
applications (or implementation systems) that must be invoked within activities, and data that must be
manipulated. In the KI Shell an object-based approach is used to record and enact a method. As the
method is enacted, precise global process status data are available for management viewing.

The example in Figure 7 is an overview of a method description comprising activity objects, use of enter-
prise data, use of applications, and constraints/controls affecting the decision at each activity. This method
example, developed for the Air Force, supports the die design process for extruding complex alloys, by
employing concurrent engineering practices. More specifically, the first activity is “Product Specification.”
When completed, it provides the Geometry, Application, and Microstructure values for constraining decisions
made at later activities. For example, the Geometry constrains the candidate billets selected from a manufac-

turing database dunng the “Billet Selection” activity.

WORK-FLOW
PROCESS

MICROSTRUCTURE [\
Product APPLICATION e
Specification f‘my
Process
vS.
BILLETS . Billet Structure .

feam 240 Selection BILLET Relationships
GEOMETRY

' MATERIAL |

Container } MODELING ;

CONTAINERS ___,,.

ttrom CDM) Selection PROCESS
PARAMETERS PROCESS
'z 1 PARAMETERS
Die
Design LOAD, DIE
RAM GEOMETRY
¥ SPEED
{,' ROUGH DESIGN ” PRESS
Select AVAILABLE
PRESSES ___,.| Press
INDEX {from CDM)
% process Pertorm
Extrusion
[:] activt Simulation
m spplications or
m tab
" y::::n on . FINITE ELEMENT l
|___ANALYSIS |

Figure 7. Example of a Concurrent Engincering Process Performed by a Die Designer Role.

The actual geometry of the billet selected by the engineer becomes the decision value of the attnbute associ-
ated with enaction of “Biller Selection” activity. This value, in turn, constrains the next activity and so on.
“Die Design” 1s an example of an activity that invokes an application for rough design before detailed finite
element simulation during the “Perform Extrusion Simulation” activity. This activity. i tumn. 1s performed
with the assurance that the needed press, necessany for guarantecing the appropnate ~-ocessing conditions, 1s
available.

32 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

Figure 8 on page 33 illustrates how an activity in a process, such as the example in Figure 7, is enacted.
When an activity is performed or enacted, a procedure associated with the activity is executed by the KI
Shell execution monitor. This procedure typically will use enterprise data, examine earlier decisions made
when other activities were performed to assist in the current decision, invoke applications on the right data,

update appropriate attributes of activities and databases, and finally, create process instances for roles as nec-
essary. This is illustrated in Figure 11 on page 36.

CONTROL

ENTERPRISE
INPUTS) ACTIVITY OUTPUTS
- o
Enterprise & - DATA &
f(l sngn PERFORM DECISIONS
Databases) (Enterprise &
Kl Shell
Databases)
MECHANISMS
(People, Applications, Tools) FOSMMEL

Figure 8. Enterprise Activity Must Be Performed By Using Information / Mechanisms under Appropriate Control.

Activities also can be structured as processes to be performed by different roles in an organization according
to the responsibilities. Coordination between different roles, to ensure activities are preformed correctly, is
also supported by the KI Shell. Figure 10 on page 36 illustrates a process for creating and reviewing infor-
mation. In this example the subprocess instances for roles are dynamically created over time.

“TO-BE” Method design requires interaction with end-users to determine the requirements of the Computer-

Aided Manufacturing (CIM) system. Figure 7 on page 32 1s an example of a concurrent engineering process
performed by a single dic designer role.

‘The Knowledge-Based Integration Shell 33

To use the KI Shell, a method must be first designed for a specific enterprise function. IDEF(0* modeling
techniques can be used to define the "AS-1S** and “TO-BE"® processes. Once a method is agreed upon, a
machine-readable form of the method is rapidly created by the Method Designer, using the KI Shell develop-
ment environment. (See Figure 9 on page 34.) This method description is stored in an SQL database. The
machine readable form of the “TO-BE“ method is enacted by the KI Shell execution environment and the
end-users are guided according to the method.

XTRUDER, funded by the Air Force and developed by UES, demonstrates that process execution can reduce
die design time from months to a few days. Dramatic productivity gains have also been demonstrated at GM
Allison. Here the work-flow process involves collaborative design of turbine blades by different roles - stress,
aerodynamics, mechanical, etc.

KI SHELL™ N NETROD
—_ METHOD [\ REPRESENTATION
DEVELOPMENT ‘\\‘h&‘.,‘iciﬁn‘y‘ TR
ENVIRONMENT Xﬁ%&’ﬁaﬁ“mm
DEVELOPMENT IN\ArRiication invocation |
AND ‘| METHOD
MODIFICATION IMPLEMENTOR
OF ANY
STARS PROCESS

SR Ul Ryt S
F Py S

E ASSISTAN

REPRESENTATION

‘ Kl SHELL
(ENGINEERS EXECUTION

Silili
APPLICATIONS .
i

[

Figure 9. The Development and Use of K1 Shell Method.

4 IDEFO0 is one of the modeling tools of the IDEF (ICAM Definition Method) methodology. IDEFO is referred to as
the function model which provides a description of a manufacturing system in terms of a hierarchy of functions. The
basic tool of IDEFQ is the activity diagram which illustrates data flow be’=veen functions, control and stimuli for a
function, and the mechanisms employed by a function.

5 "AS-IS” process refers to a systern of processes that currently exist to support the development or production of some
product, e.g. a software system, a computer system, etc.

6§ "TO-BE" process refers to the desired system of processes needed to support the development or production of some
product.

34 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

The term Assistant is used to describe the final software compnsing the K1 Shell method, the KI Shell
runtime utilities that interpret and enact the method, and the interfaces to the applications. When an
Assistant is used by the user of the CIM system, the method guides the deciston-making during the process
{collection of activities). For the current activity, the KI Shell execution monitor invokes the perform proce-
dures that control the invocation of applications and the use of data.

(9]
n

The Knowledge-Based Integration Shell

PLANNER
=] ‘ + Release Order for
E‘ ' Production

GROUP LEADER

« Review ltems

DESIGNER

« Provide Missing
Item(s)

GROUP LEADER

: Role Name (WHO)

« Assign Designer

L

& | exxxxx : Activity
'PLANNER o £'] —= : Signal to execute
« Select New Order o an activity of another
» Identify Missing items role

| I | ——

Figure 10. ACTIVITY & ROLES: To Support a Generic Enterprise Sub-Process.

PROTOTYPICAL
ACTIVITY

PERFORM

C PROCEDURE

PREVIOUS DECISIONS
(Kt Shell Database)

INPUTS (Enterprise &
K! Shell Databases)

- Set up Sessi
PROGRAM | | 1 nimt Data Invoke

INVOCATION + Examine Output

OUTPUTS - DATA &
DECISIONS (Enterprise
K1 Shell Databases)

MI47

Figure 11. PERFORM EVENT CAUSED BY A MOUSE CLICK AT THE USER INTERFACE: Causes Exe-
cutivn of a C Procedure.

36 STARS Task 1S-15 Software Process Tools and Techniques Lvaluation Report Version 1.0

5.2 Summary of Kl Shell Features

The key features for modeling processes in K1 Shell are:

+ Modeling of roles and the structured process to be completed by a role with no programming effort
required.

+ Ease of development of procedures to be enacted.

* A library of rcusable code available for programming productivity.

The key features for supporting process enactment in KI Shell are:

* Enaction of procedures including invocation of applications on the correct data to complete activities in
the process.

» Guidance for the end-user based on the current activity.

¢ Maintenance of global process state.
The key ber-fits provided by KI Shell to support the development of process systems include:
* Knowledge of work-flow process control is made explicit and thus easier to model, customize, and
evuie.

* Reduced assistant development time, with significantly fewer lines of code are required to develop K1
Shell process assistant (system to support process enactment).

* Layered and incremental assistant development with more done by domain expert and less done by the
programmer.

5.3 Kl Shell Concepts

The term Method refers to a collaborative process enacted by different roles, with cach role executing a sub-
process using data and tools. In this section we present the Method meta language (a language for defining
methods) related to the unique process enaction technology developed by UES scientists over a twelve-ycar
period. This meta language is cntical to supporting process requirements for STARS, because it enables
complex processes to be described and executed. The Mecthod meta language facilitates casicr modification
and evolution of any process.

5.3.1 Method Meta Language

The term Method is used here to refer to a specific software engineering method. On the basis of our long-
term software engineering rescarch efforts to develop a methodology or Method meta language”, we have
concluded that any software engineening method can be decomposed as a process consisting of activities (or
verbs), data objects (or nouns) created and modified during that process, tool fragments used within activ-
ities, and the roles responsible for performing the activities. More generally. a method is a discipline
("when”) by which product data objects (“what”) are created and changed to different states by specific indi-
viduals ("who™) using specific procedures (how”™). Some of the key terms of the Mcethod meta language are:

* Activity:

By language we mean the collection of syntactic and semantic conventions and the collection of System Integration
Library functions that are available via the K1 Shell Development Favironment. The interface presented s more like
an environment as opposed to having to write statements in F ORTRAN.

The Knowledge Based Integration Shelt 37

A basic unit of work in terms of “what” and "how”. An activity is a slot with an associated completion
condition. The "how” is described in a C Rule or Procedure with SIL (K1 Shell System Integration
Library) calls.

Attribute:

Placeholder for data values in a process frame. A varety of complex attnbutes like sets, arrays, and text
are supportel.

Complete:
Status of an activity that allows users to progress to the next activity.
Data/Information:

Data used or created when performing activities. The data can be stored in diverse sources such as in
external databases, in files, or in attributes of K1 Shell process and information objects.

Method:

Body of knowledge, policies, and procedures that can be created and maintained by multiple roles. Spe-
cifically, a method consists of process frames grouped by roles.

Method Instance:

History or audit trail of the enaction of the process/method for a specific product.
Perform, Premodify, Postmodify:

Examples of events that cause rules (triggers) to fire.

Process Frame:

Aggregation of a set of activities structured by a control construct that determines the sequencing of
activities. The order of activities can be “sequential,” “choice,” “if-then,” etc.

Process Frame Instance:

Instance of a process applied to a specific product.

Programming Interface (PI):

A C callable program that invokes the tool on specific data and returns specific values.
Role:

A collection of activities performed by a prototypical project member. A role 1s a network of process
frames. A user can execute different roles.

Rules:

K1 Shell/C Procedures (triggers) associated with activitics that assist users in performing activities, propa-
gating values, implcmenting constraints, etc. The body of the program can have calls to SIL that manip-
ulate the process and information frames. Rules used for computation, monitoring, notification, tool
invocation, and transformation.

Scquential, Choice, If-Else, While:

Attributes of a process frame that determines the sequencing of activities within the frame.
Slot:

A eroup of attnbutes, rules, and Iinks.

Subactivity:

The refinement of an activity by another process frume. Completion of the subactivity process implics
the completion of the parent activity.

STARS Task 1S-15 Software Process Tools and Techniques Fyaluation Report Version 1.0

* Tools:
External Programs invoked to perform an activity.

* Wait and Send Signal:

Synchronization primitive, which suspends activity until it receives a signal from other activities in other

roles.

¢ Information Frame Features:

A collection of slots with the following properties: object-valued attributes (one-way), inks (Two-way),
and complex attributes (sets, arrays, text). Rules are triggered when data is modified and the action part.

of rules can access frames database, and interact with the user, invoke tools, etc.

Figure 12 on page 40 is an example of a more detailed method layout for a specific software engineering

process based on the waterfall process model. This method, when enacted by the KI Shell, will coordinate
between roles. For example, in the sequential frame for the “Projects Manager” role the user cannot proceed

with the “Approve Systems Analysis” activity until the “Systems Analysis” role executes to completion.

5.3.2 Kl Shell Process Modeling and Enactment Features
Features for supporting KI Shell method development (process model development):
* Includes a Method Development componert, based on the KI Shell Method meta language, that pro-
vides a declarative environment to create and modify complex methods.

» Enables rapid and incremental development and modification of a method for any SE processes.

» Permits method objects to be stored in SQL. The Method Development Environment has a schema
editor that allows Method Objects to be maintained in a database. A Programming Interface (PI) to
method objects is available.

» Provides a productivity tool to generate the body of rules associated with the methods. Object-based
query functions that can be embedded in procedural components to query process and information
objects are also available.

+ Includes the System Integration Library (SIL) functions, productivity tools, and object-based query func-

tions reduce the lines of code to be written by the developer of a specific SEE (Software Engineering
Environment).

Features for supporting K1 Shell method enactment (process enactment):
+ Permits rule invocation (triggers) to perform the “How” on the basis of events related to the current

activity, role instance, and information objects.

+ Executes process and invokes program interfaces (PI) to tools on the basis of the right data in the
context of executing activity models.

« Maintains an audit trail of the process exccution in an underlying SQIL. database.

cuted by another role).
« Allov.s a user to exccute different roles and instances in different windows.

+ Provides a multi-window, graphical, and iconic user interface using industry-standard OSE Mouf to
present executing processes iconcally.

* Permits a I AN configuration with a process server database, where different role instances can be exe-
cuted on different workstations.

I'he Knowledge Based Integration Shell

39

——— -

X *xseny
1]

. v SMNS

ey uogmueweiduy sxgveg | o poubjesy L L

ousrey | wtssqunvey |- (Ao Wwey) uopnios mep ok

udseq vogdyoeeq ungwey | Ao Wepy) wieiqasg e 00mIINg WOM WRLND MAS wdg
Brywg) sBng/reITEey MOuS punodyreg wopdiose(¥SBL MOUS/ Wil ARy o005 LY 0]
JOVIOVA NHOM 163N034 kY3 | uSvL |- Y3aNIN 3IN00N LNINOINOD OV

wvL wychuosy
wyen usewey
oew) prehing moug onbey sirgeeg mop + —
nquep Ag sBug WoMNNT | soug uodey Bng mein
seutse |y Suppwey Y Moug sxyve eonbey
e mepveBunomees 8ng Lodey
CEL 5 ANSOIONI™1HOdIY
1 smo (201 -]
nleusyy yew) : ooy #uodey ReppLt | o0y
|
wopoy ubmeg pon + = !
04 NG Roveyero] ! Baig Lodety
mopay 9900 e,
seag odey 1
weL | (Ao Warep) uopnios Kpeds
uogmueweduy v Uoed)
(exop) 990D opduiog (Ao Wmi) wegoiy Apeds
WORTLISEQ SINPON MRA 1
P00 W3 - | OR8N 8iNPON MSIA _
38
P ey UMwe] 1300 20 180nbey) sBuBLO Mepeyy ! Busweanbey sepEA "
NOILYININI NI WuOau3d || HOININT W " Y¥3INDISIO |
TS —] + oy
auewed oy | aubeeq : ey "
e o o e mr e o v e e
Moy J9NPUOD u -
mseiboiy odey
|npoyy aIve.)
seiBoig wodey aWeUoduwoD Jofen Sives)
mopey 190pU0D s Anbey Lpedg
HIMIATS SIBATYNY SHILSAS
T -]
JOMOARY | By ashmuy sweisiG : ey

- = g NSUL GJUBUSIUIOYY 99010
0503089 wom ubisseey
oebexoud Wom mejaey

seberxpeg wom ubjesy

IONVNILNIVW IOVNWW

TR

r-

— = = = 'dwi enpoyy 10i0WOD
soinpoyy ubisswey
29NPAYIS AIPOYNMeIA

SewR)g UOJBULIDJU} UOWIWOD

mo|jeg
Sewel4 UOjIBLWIOU|

oY) 86 ue) ejoy yoe3

SNOLLVININT TN
IINAON IDOYNYW

welosg ew0l
ouRUSuIBYY ebeury
SUoRIUSLIEICL| SiNDOYY SACITdY

| _—s

L — - subiseq sinpoyy ewidwio)
subpeq einpoyy ubisseey
0nPeYIS AUPOop/meIA

SNDISIQ™TINQON IOVNYIW

TR

— —p ishjouy sweisis #1010W0D

dui| ejnpoyy ebeusyy
sojueweidw| o(npayy ubieey
ubpeq einpoyy eac.ddy
subiseq einpoyy ebeueyy
ss0ubeoQ einpoyy ubewy
uripuy swelsis enciddy
sishpuy sweisig ebeumy

pubg - — —
Ayrposang e

dpeucgerey

SISATYNY SN31SAS 3DVYNWW

TomND
wBeuvpy 8120{04 : 0

Pel0.d ey
$9[NPIUDS KUIS MEIARY —
Y3DVNYW S103M0ud
sshsuy As uBseey
Myenbeg
*INPOUSS AlPOY/MOIA nbeuepy moelag : ojoy

=

widbpesed

Figure 12. Method Layout for UES's CASE Manager.

STARS Task 1S-15 Software Process Tools and Techniques Fvaluation Report Version 1.0

40

KI Shell (Figure 13 on page 42) has been enginecred over years as an open-architecture system written in C.
A process execution shell must orchestrate interactions between end-users, tools, and data objects according
to a specific method. To enforce such a discipline, the execution monitor must have detailed control over
the activities of the end-users as they invoke tools, perform activities, and modify data objects. The detailed
control is achieved by building the shell as an intermediary (executive) program among the user, the tools,
and the shell’s own object-based databa' 2 (Figure 14 on page 43). By having this control, the process
model can enforce a discipline by utilizing its represented knowledge. Finally, the process types and
instances must be persistent. By saving the process instances -- the decisions made at each activity -- an
audit trail of the enterprise work-flow process can be maintained. Such a persistent store must also provide
the usual database features - multiuser, crash recovery, etc. The KI Shell has been enginecred over years to
mect these requirements.

5.4 Installation of a Kl Shell Application

The KI Shell is implemented in C? and runs under AIX, UNIX, VMS and DOS. The method descriptions
are stored in an SQL server database on the workstation. A SE Assistant of the KI Shell is a method with
tool invocation program interfaces to existing software (for example, design, analysis, etc.). In a typical cus-
tomer environment, the existing software systems may run on heterogeneous hardware. Thus, a program
interface to each of these tools is required. To suppoit the method in a local area network with roles exe-
cuting on different workstations, one of the workstations must have an SQL server database and the other
workstations must run the database client software.

Early prototypes include a LISP (KRI)-based system completed in 1982, ENIACS UNINX-based system completed in
1984, IBN VAL based system completed in 1986, IBM VAL -based product with an undertving database in 1988,
VAX VNS -based system in 1988, and the current product version using C and SOL in October 1989,

The Knowledge Based Integration Shell 41

o)
L
KISHELL Monitors And Mediates ; m‘ i

Between: |
: _ K1 Shell Monit
- User And Aa\plication ' © r"’"' or
- Application And Application -
- User/Application l Operating System]
And Database o 1 N
- No Performance Penalty At Application " [Aeescston i ... [apptcation
Execution Time L Lz 3
E 1 ¥i (3]
T

...

, =
raditional: ,

* User Invokes
Each Application

[Operating System j

p RN
Application Application || ... " Applicatian

Figure 13. KI Shell’'s Runtime Architecture.

42 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

CLEANROOM
PROCESS/
EXECUTE
CONTROL

PROCESS
EXECUTION
SHELL

METHOD REPRESENTATION

Controls interactions and uses knowledge to mediate between the project

members, the project database and the tools.

Contains knowledge about:

- the database objects and relationships

- the activity structure and support for each activity

- the tool functions and when the functions

should be invoked

- the project members' roles
An activity can invoke KI SHELL Utilities

=

| OBJECT-ORIENTED INTERFACE UTILITIES
DATABASE = UTILITIES = PROVIDING
{Activity an_d Data - . AND ACTIVITY PROGRAM
Objects) - ~ .~ . INTERPRETER - | - INTERFACES
- , ST e . TO SOFTWARE
: s i N - . TOOLS
(KI S_HEI».LV SiL)) e
[} 4
\ Y
TOOLS
PROJECT MEMBERS AND EXTERNAL
DATABASES
OL. OL
H‘\% ce 9:‘% ﬂ Tool 1 ” L‘l’ooi 2:!!}
e l Tooln |

Mi81

Figure 14. Knowledge-Based Shell Will Be Used to Implement a Specific KI Shell Application. Applications Include
"Software Engineering Assistants.”

The Knowledge-Based Integration Shell

43

Intentionally left blank.

44 STARS Task IS-15 Sofiware Process Tools and Techniques Evaluation Report Version 1.0

6.0 STARS IS-15 Software Process Case Study Preparation

6.1 Preparation and Scoping of “Cleanroom Software Process Case
Study”

This section briefly describes the activity and records the lessons learned during the creation of “The
Cleanroom Software Process Case Study” deliverable.

6.1.1 Brief Description

This task was completed in two steps. The first step was to understand the goals and strategy for the case
study. Upon its completion, the second step was to prepare the case study problem document.

Initially, a number of group discussions were held by the specification team to clearly understand the
purpose of a “Cleanroom Engineering Process Assistant (CEPA)" and the purpose of the case study. The
more general questions of what is a process, what is process modeling, what is the purpose of a process
assistant, and how do humans interact with a process were discussed. In understanding the general concepts,
specific insights were gained. These discussions helped determine the size and scope of the case study and
the strategy for the demonstration. After each discussion, the present state of understanding was noted,
along with open questions and action items. This allowed the body of knowledge and understanding to
increase, while the specification team became more focused on the end result of the discussions, which would
be the writing of the case study. Additional discussions helped focus the case study-specific concepts more
closely. The size and scope of the case study was determined. ~he parts of the Cleanroom process that
were to be used for the case study needed to be carefully listed and described. Additionally, the scope of the
case study, a description of what the Cleanroom process was going to be applied to, was also determined.
This was the “Host-at-Sea Buoy” problem <23>. Both the size and scope needed to be well thought out,
since time allotted to perform the case study was limited to three staff months.

The deliverable was written by first determining the goals of the case study, and then supporting the goals
with additional information necessary to make the case study description complete. A sequence of versions
was created, each of which was reviewed, with the comments being used to improve the next version of the
Jocument. After a number ot revisions, the document was revritten to improve clarity and to improve
organization. The document first presented an overview, which described the purpose, approach, assump-
tions, and relevance of the case study. Subsequent sections described the case study in a more detailed
manner (including discussions of the Cleanroom process, CEPA, and the “Host-At-Sea Buoy” problem), the
test bed and scenanio descriptions, a proposed demonstration scenario, and evaluation questions (for both
the Cleanroom process and CEPA). Additionally, the “"Host-At-Sea Buoy” specifications were included, as
was a discussion of the relevance of the case study to process modeling work previously done by Kellner and
Rombach for the 6th International Software Process Workshop < 14>,

6.1.2 Lessons Learned

The specification team could only select a portion of the Cleanroom process model, given the project’s time
constraints. To capture the entire Cleanroom process would have been a significantly larger task.

Insunng that the portion of Cleanroom sclected for CEPA contained all of the cniteria that Kellner and
Rombach deseribed in their paper “Comparisons of Software Process Descriptions” was a useful exercise. The
criteria wdentified helped the specification team make the portion of the Cleanroom model sclected and the
buoy problem more complete. The Kellner:Rombach criteria gave the specification team a checklist of
issues to consider when developing the case study.

STARS IS-15 Software Process Case Study Preparation 43

Although it was attempted for the “Cleanroom Software Process Case Study” problem document, a script for
a test or demonstration scenario is difficult to create until the prototype is complete. Although specifications
can be prepared for a prototype concept, there are no guarantees that the specification for the prototype
system will be completely and correctly implemented. Additionally, it is necessary to work with the final
prototype product to better understand how to demonstrate the concepts built into the prototype system.

Writing an implementation-free specification of the buoy problem was a straightforward exercise using Mill’s
Box Structure notation <24>. Further, the Construction Plan was also relatively easy to prepare using
“Box Structure” notation. This was somewhat surprising since the “Host-at-Sea Buoy” problem is not a
tnivial application.

6.2 Preparation of Specification for the CEPA Demonstration

This section briefly describes the activity and records the lessons leamed during the creation of the “The
Cleanroom Engineering Process Assistant (CEPA) - Specifications for a Prototype of the Workstation Compo-
nent and Dispatcher.”

6.2.1 Brief Description

The primary goal of the specification process was to create a specification for the implementation team to
use, to develop a prototype Cleanroom Engineering Process Assistant capable of supporting the enactment of
the Cleanroom Engineering Software Development Process. Since this is a case study, an objective was to
observe the specification creation process to gain experience for an eventual production version of the CEPA
systemn.

The perspective from which the specification and validation team tried to view CEPA was that of a process
engineer who is trying to develop an automated support application for a project’s process. From that per-
spective, the specification and validation team needed to understand the underlying process and to identify
the parts of the process in need of implementation. The specification was created by first spending a signif-
icant portion of time to understand the problem and solution domain. Specifically, the specification and
validation team’s focus was on understanding desired capabilities for CEPA in spccific and for a process
assistant in general. The specification and validation team tried to understand what an ideal CEPA would be
like. The team took advantage of experiences individuals have had creating and using other systems, both
inside and outside the CASE domain. Looking at a potential system from an abstract perspective allowed
the specification and validation team to understand the problem as completely as possible before embarking
upon a specification of the solution. Of course, some “problem domain” analysis occurred while the specifi-
cation was being developed. The specification was then created, with the intent of clearly specifying all
functionality that was necessary, without imposing a specific solution since that was the responsibility of the
implementation team. Five versions of the specification were written. Most of the specification remained
relatively constant after May 13, which was the second version. A portion of the time writing the specifica-
tions consisted of discussions with the implementation teamn, to explain the specifications and to assist the
implementation team in developing the prototype. This was done since the specification and validation team
authored the specifications and was the resident expert on the Cleanroom process. In terms of an cffort
distnibution for the specification, approximately 45% of the specification and validation teamn’s time was
spent understanding the problem and solution domain, 45% was expended in writing the specification, and
10% was shared in working with the implementation team.

The final version of the CEPA specification desenibes the set of operations that CEPA can perform (from a
user’s perspective), that will support the software development project members in conducting a Cleanroom
project. A number of different roles that staft members can perform are deseribed. as is a sigmificant amount
of functionality necessary for the Cleanroom process. The specification did not present a complete
deseniption of the Cleanroom process, nor did 1t deseribe all of the activities for all staff members related to a
project. The specifications were purposely Timited by the size of the case study. Pramanly the

460 STARS Task IS-15 Soltware Process Tools and e hniques Fyvaluation Report Version 1.0

development/certification cycle of the Cleanroom process was specified, since the purpose of CEPA was to
support the case study.

6.2.2 Lessons Learned

Working on the User's Manual portion of the specification was important, since the possible stimuli for each
user were clearly defined in that section. Additionally, the User's Manual is the primary section where a
developer can get an idea of the intended look and feel’ of the software, although the User’s Manual should
not dictate a specific implementation.

The use of the notation for black boxes, as defined by the Box Structures notation < 24>, for the specifica-
tion and design of systems allowed for an implementation-free description of CEPA, where only the
responses in terms of stimuli histories were presented.

Writing a box structure Black-Box Specification seemed to be extremely efficient. The specification and vali-
dation team is not sure that a similarly good specification could have been written, given the same time
constraints.

Transaction descriptions were used to show sets of related stimuli, to give an implementer a better idea of
the CEPA transaction usage, e.g., a sequence of stimuli. The transaction descriptions also helped the
specifier to ensure that all stimuli were used, as well as used correctly.

Use of abstractions helped make the description of the box structure black-box subfunctions more compact.

Relatively complex systems can be described quite compactly when a box structure black box description is
used. Less than 100 stimuli were required to describe CEPA.

Looking at CEPA from multiple user’s perspectives (the different human users, as well as the dispatcher and
storage mechanisms) helped make the system easier to understand and specify.

Both CEPA and the tools that run under CEPA are important. Using one without the other does not yield
benefits since one nceds the control flow to determine which work to do, as well as the actual tools with
which to do work.

The planning and scheduling tasks would have been difficult to implement. Because an ideal planning and
scheduling tool would probably be embedded (like Oracle) since some tools as well as K1 Shell would need
to interact with it. Otherwise, information from the planning and scheduling too! would need to be con-
stantly converted into a form that would be usable by KI Shell and other tools. This makes the API
between K1 Shell and the planning and scheduling tool more complicated. It also leads to the need for a
new and complicated API every time a different planning and scheduling tool is selected.

A clear and precise Construction Plan for CEPA may have also helped direct the implementation team and
would have given the specification and validation team a clearer set of assessment critenia since specific func-

tions would have needed to be submitted at certain dates.

Uniquely describing stimuli and responses, by including the names of the devices between which the stimuli
or responses move, made the categonzation of stimuli and responses much more organized.

Using an appropriate file-naming convention can case the task of storing state data, because related sets of
files can be found by only knowing a partial name (suftix or prefix) relating a set of state data files.

Many box structure black-box subfunctions were similar, in that the conditions for responses were similar,
although the responses (to the screen or to other devices as abstractions) were umique to cach stimulus.

STARS IS-15 Software Process Case Study Preparation 47

NOTE:

One disclaimer must be made about the specifications for the “Cleanroom Engineering Process Assistant
(CEPA).” The CEPA specifications document <37 on page 156> is not a complete specification of the
Cleanroom process. Cleanroom specifications have six volumes: (1) a Mission Statement, (2) a User's
Manual, (3) a Black-Box Specification, (4) a Black-Box Specification Verification Statement, (5) a Usage
Profile, and (6) a Construction Plan. The CEPA specifications contain partial versions of the first, second,
and third volumes. Time constraints prevented these three volumes from being completed and prevented the
other three volumes from being started. Therefore, the CEPA specifications should not be considered an
example of a full Cleanroom specification. The three volumes should be viewed as prototype instances of
those three volumes of a Cleanroom specification. Even from the portion of the Cleanroom process selected
for defining the CEPA prototype, the benefits of Cleanroom specifications are apparent.

6.3 Validation of the "Cleanroom Engineering Process Assistant”
Implementation

This section brefly describes the activity and records lessons learned during the validation of CEPA.

6.3.1 Brief Description

It must first be noted that the creation of the CEPA prototype entailed a four-step process: (1) determining
objectives, (2) evaluating alternatives, (3) developing/verifying, (4) and planning for subsequent steps. The
four steps were iterated a number of times. These iterations are consistent with the Spiral Model of software
development conceived by Boehm < §>. The Spiral Model allowed the IBM team to increase its under-
standing of the problem at hand by following the same set of steps, while armed with more knowledge at
each iteration.

The validation task is really twofold: validation of the preliminary versions of CEPA and validation of the
final version of CEPA. The hope was that a concerted effort in noting and resolving problems in prelimi-
nary versions of CEPA would minimize the need for changes to the final version of CEPA.

The first task has been completed. A number of review meetings have been held between the specification
and validation team and the implementation team, where the concepts of and specifications for CEPA have
been discussed. Implementation options have also been discussed quite a bit to ensure that a consistent view
of the implementation exists between the implementation team and the specification and validation team. In
addition, these meetings afforded opportunities to assess the vanious versions of the CEPA prototype.

CEPA was reviewed and validated against the specifications, with divergences being noted. User interface
flaws and other shortcomings in CEPA were also noted. A major significant flaw in the CEPA implementa-
tion, which would have given CEPA a less than desirable “look and feel,” was also resolved in one of the
mectings. A Hypertext-like “look and feel” was preferred, given the capabilitics of KI Shell. In this case the
implementation team was able to take advantage of a feature of KI Shell in a way which had not been con-
stdered before. According to an implementation team staff member, this previously unrealized use of KI
Shell was desirable and would change the way future implementations would be done using KI Shell.

The second task of validating the final CEPA was performed by employing coverage testing against the
CEPA spectfication. The only true departure from the CL1EPA specification and the CEPA mplementation
was the implementation of state data management. The specification called for CEPA to automatically
return all state data that had been checked out. back into the state data repository. It was not possible to
develop this capability in the "S” increment. The problem of state data management can best be solved by
the selection and integration of tools into the CEPA system to provide configuration and hbrary manage-
ment support.

48 STARS Task IS 15 Software Process Tools and Techniques Eyaluation Report Version 1.0

6.3.2 Lessons Learned

Box structures makes it possible to perform verification at an early stage, since the assessment criteria were
clearly defined.

It is better to find and fix problems as early as possible, since these corrections are less expensive than cor-
rections made as a product nears completion. For that reason, a sequence of versions for the prototype was
helpful.

User interface “look and feel” issues require solution domain evaluation and some experimentation with the
prototype. It is difficult to predetermine what the system is supposed to look like before knowing the limita-
tions of the implementation. Additionally, the precise user interface “look and feel” may be modified as
validation of the final product occurs.

Due to the use of box structures, which was a clear description of the desired functionality, no major func-
tional problems were found, only ‘look and feel” related issues.”

6.4 Major Lessons Learned from Case Study Preparation

This section contains major lessons learned by the specification and validation teamn during the IS-15 task.

Automating the Cleanroom process with CEPA focused quite a bit on the automation of the engineering
tasks -- the basis for automation of the process.

The user interface is critical to make a software system usable, since the “look and feel” are features to which
human users of CEPA react. Even after specifications are given, sceing what the software looks like is
important, since that is a determining factor in making the software usable.

Specifications should be closely followed. It is often tempting not to follow them, since that avoids the need
to understand another person’s document. On the other hand, not following the specifications leads to
development of software that may not be at all what is desired.

The need to have a CEPA that is as unintrusive as possible to the user is of utmost importance. A user-
friendly CEPA will have been built when engineers using CEPA only see themselves following the
Cleanroom process and do not realize they are also using CEPA. In other words, the process is visible to
the users of the process, not the tools supporting the enactment of the process are invisible.

The importance of having an automated assistant to help in the adoption of a process was never so clearly
recognized as it was when the specification and validation team participated in creation of the CEPA proto-
type. Individuals using traditional heunstic methods of software development will probably more readily
move to a process with automated support than they would to a process without automated support.
Having automated support for a new technology gives the new user a sense of security, in that there is some-
thing helping the user learn and take advantage of the process.

Having the box structure Black-Box Specification was very useful in determining when the implementation
tecam diverged from the specification. Since the specification did not imply design, the specification and vali-
dation team and the implementation team did not waste time debating what design the specification was
implying. Rather, ime was spent working with the implementation team coming up with the best possible
solution, given the time allocated for the case study.

The most important lesson learned was that it is both possible and extremely productive to use the formal

design methodology inherent in Box Structure methodology when developing prototypes. The volume of
documentation produced and the quality of it (in terms of correctness and consistency) would have been

STARS IS-15 Software Process Case Study Preparation 49

difficult to produce by using any approach. Although such a design approach is formal, specifications
produced using box structure black box notation were casily developed and quickly produced -- two traits
that are often not associated with formal design approaches.

6.5 Use of Cleanroom Specification Techniques to Model Processes

For STARS Task IS-15, the Cleanroom process needed a suitable process modeling notation to allow the
automation of portions of the Cleanroom process in CEPA. For 18-15, Cleanroom specifications, which are
based on the concepts of Box Structures, were chosen to model the Cleanroom process. The use of
Cleanroom specifications was beneficial and will be described in greater detail over the next few pages.

A specifications document for a process model must describe the process in sufficient detail and precision to
allow the process engineer to implement the specification. A Black-Box Specification for 1S-15 was created
using Box Structures. In using a black-box description, all responses are described solely and completely as a
function of stimulus histories. In this way all actions are clearly described without making implementation
decisions, because all actions are described solely in terms of input and output. A sample black-box sub-
function from CEPA specifications appears in Figure 15 on page 51. Additionally, since each stimulus has
a different stimulus subfunction, the actions for every input are clearly described. Stimulus subfunctions are
a good level of granularity for the process engineer, since the complete set of responses with full control logic
for every input is given. The result is a description of what each part of the system does, accumulating into
precisely what the entire system does. An additional perspective to describe the system was also needed,
because users actually use the system by entering multiple stimuli and may think in terms of sets of inputs or
transactions. Additionally, the relation between stimuli, such as where they are on and how they are
accessed, is also important to see. In effect, not having the second perspective can lead to a classical case of
“not sceing the forest for the trees.” Cleanroom specifications account for the second perspective on the
system with the User’s AManual.

S0 STARS Task 1815 Software Process Tools and Iechniques Fyaluation Report Version 1.0

CK
g OF BLA
B%‘;(MSUBFUNCT‘ON

black box subfunction S4: Modify Engineer's Notebook is
[The enginecr’s notebook is a diary in which the engineer may write whatever he/she would Jike]

B4.01 Read WS3:Get Engincer's Notebook(user, WS directo - ?_
B4.02 Activatg WT1:Engineer's Notebook Tool (user, WS directory/Engineer's Notebook), ﬁess
[At this i i i

t, control is currently with th L. Control will return to the subfun kg@
A hot key will get a remove a o
position whefimulus is reselected, or onc

ser from this posigon, and will re this

B4.05 Restore;

SEQUENTIAL
NUMBERS OF
SUBFUNCTION. EACH ACTH

SUBFUNCTION HAS A peSTh o gseNT
UNIQUE PREFIX. (REPE LY

—

Figure- 15. A Black Box Subfunction from the CEPA Specification.

The User's Manual describes the software system from the user’s perspective. Each input corresponds to the
selection of an option on the screen, such as a mouse click. The inputs available fc. eact user are available
in a textual or graphical form. In that manner a potential user can see, before implcmentation, what the
‘look and feel” of the system will be like. The user interface is somewhat dependent on the implementation.
For cxample, certain languages or features, such as X-Windows, allow the user interface to function in par-
ticular ways that may need to be considered when designing a product. Additionally, these featui.s, such as
OSF/Motif, require the use of additional stimuli, which are not fully described since they really do not affect
CEPA. All inputs and their availability/location in the system are described in the User’'s Manual. The
other feature of the "User’s Manual is a description of transactions, which are sequences of stimuli that lead
to the completion of larger units of work. Transactions were shown graphically in the CEPA specifications
to describe the sequence of stimuli that lead to the assignment, creation, and completion of a black box, for
example. The transactions help users see how sessions or “day in the life” scenanos would work. These
more closely describe the way they will use tue system. Figure 16 on page 53 and Figure 17 on page 54
illustrate the inputs available for a developer and the transactions necessary to create a black box, respec-
tively.

The Black-Box Specification and the User’s Manual give two complementary views of the CEPA system.
The Black-Box Specification gives a precise description of the system in terms of stimuli histories and
responses. The specification completely describes what the syvstem does. This level of detail is necessary for
the process engincer who will be implementing the process. The User's Manual complements the Black-Box
Specification by descnbing the system from the user’s perspective. This document describes the system 1n

STARS IS-15 Software Process Case Study Preparation S1

terms of how it looks and how it will be used. By reading both the Black-Box Specification and the User's
Manual, a user clearly understands the functiona..'y and the “look and feel” of the software system to be
umplemented.

Box structures were also used to described the Cleanroom process for STARS task 1R-70/E, creation of “The
Cleanroom Engineering Software Development Process (SDP)” <36>. In that document the Cleanroom
process was divided into a set of 25 processes. In preparing the Cleanroom Engineering SDP, black, state
and clear boxes were used. The state and clear boxes served to describe what information was stored, and
how it was stored. The clear box also helped to clearly describe the process, in terms of engincerning tasks
and conditions. Engincering tasks arc the actual steps that engineers, or teams of engineers, follow to do
work. Conditions serve to show the control flow (in terms of entry and exit conditions) between different
engincering tasks and between processes and between engineering tasks and processes. The conditions
included completion conditions, which are detailed checklists of actions that must be completed before the
process itself is considered complete. Figure 18 on page 55 and Figure 19 on page 56 display a sample
Cleanroom process from The Cleanroom Engineering Software Development Process.”

52 STARS Fask IS 15 Software Process Tools and [echniques Fyvatuation Report Version 1.0

EY
.
L]
,
.
1
[
.
1
1
t
4

eleg 21wl
d .m }00GaION

3l wEp 219 [[v AJuaa - jjoso]
(nuatugns UONIR]IS) BIR(] ANS O
(19%4J1POIN *dM 1) %00q10N ()

‘uossad uo paseq s [Jo MU0 219YM - (A U1) NoOQPURH

(smopus dm) Q@

O
X &Q W lwd

0 ;
wﬂ)wma J

LLE R

)
935 (SuQns3
¢

-eah

uB159pa1 95N 9519 “Is1] o1d Jjo axe) ‘paacidde
uonipuod uonjdwos i - (uSisopal 3sn)
NOILITdW0D 40 ¥3avIT AVIL AJILON
‘udisapas osn IS[d

*1opeaj ureay £jnou op uay) *sassed

MIAI wed) J1 - (uB1S9P3s 9sN)
(9€°09-L7'09) MIIATY WVILATOH

(09§ uonaunj-qns
gl
R\ e

vWMaivn> :<1oarao Noisaa>

neN
1Oardo ' SNOILIANOD
NOIS3d ----4 MWO NOILTTdINOD NOIS
JOTWNYN &
: ISNOJSTH 1D MIIA
NOLDSIa oW
avy ...
NOLLSAND W \ a5
AGAWVYN \ A\AVV0 241053y
\
9@ 2» VO 18NS
\- "
W (S41) L¥OdTd NOLLDTAAOD
FVdIUd
it . 3003 153¥¥0D
40 AWVN

X08 ¥v31D

e
u Nmn.roﬁww XO8 3LV1S
&MM.)&QQ X08 ¥ov1d

AON4 :HLINS 30f 1LX3L

Figure 16. Developer Screen Format.

53

STARS 1S-15 Software Process Case Study Preparation

®1Bp 9181 OUl 0F SWalt sueaw , Iadoaaaq o1 ey puag

SYSB L MIN 1BANOY O S9[NY 9IN0axXy
» /151 5,13do[2A3p woLy 1wauIUIISSY YSE L, 2A0WY _ YO YO IoN *

suonipuo) uona[dwo)) A1y - 91§
- 20ISY/ETAMS ’

| »

suonipuo) uona[dwo)). udis - 878 g

QI0ISIY/TTAMS g]

mcoﬂ ! m uona[dwo)) aenoI) - [
39 ._o_ J 19pea] ™ u0sy/pEamS

SiD.f xog yovyg wea] 1dwold -QpS / /)ﬂézv.mwﬂ
II_B troy s - Wom%.aém xog yov|g 4} ﬁwﬂr mw/O
sIaqusw wrea) juswdojaasp Wwﬁu?
[[e 01 JU3S AIBP MIIAII 135 O} [FeJ
: ... %m
3N 54915 XOF YOP[H - (9 —~aggpmmmmmsnen /)9
Yo i 7 o»v
OW /YOA XOg] YOu|g JIBALD - 655 g now%.._moow\ww wm.“w:mou
A .ll...lEoE:m_mm< ysel - 9zS
NI .m.&.%g 4 Olﬁwﬂmd.w.ﬂ 19peadT] wea |,
dNIL Odm_) 4&\\\\‘ TUSWAO3A3(]
W SIN G e
ya?? ¢

Using CIPA Facilities to Perform a Black-Box Task.

Figure 17.

STARS Task 15-15 Software Process Tools and Techniques Evaluation Report Version 1.0

54

Process E19 - Develop Certification Plan and Tests For Increments 1..i

Process Summary The Develop Centification Tests For Increments 1..i process completes the
preparation for the certification of the software product. A usage-based testing approach is developed,
which will allow for usage testing to be conducted on the software. The process is illustrated in the
figure below, and is also described in greater detail below.

Outer State

T1: Project Document Files

T2: Software Specification Files

T3: Software Development Files

T4: Software Certification Files

TS: Project Management Files

T6: Unresolved Questions or Issues

T7: Pre-Release Software

T8: Failure Reports and Engineering Changes

! 1
! !
| '
E19: Develop Certification Plan
and Tests For Increments 1..1

\
\ \)\’ Engineering Tas
5“ 13: E4 Complete ¥ ,{for Process E19

—> 112: E19 Complete

S
Pr@yious Processes Increment Development (E1 S S A Q,
” OO
Prefrondition None “

Sub®quent Process Increment Centification (E17) Q

Stimuli E4 Complete (13)

Responses E19 Complete (112) P
State Data Usage This process involves the creation of certification tcst&‘§r $§%&warc product,
which is the primary content of the Software Certification Files. That mate/Qy¥3 ted and modified
by this process. The Project Document Files, Software Specification Files and&x Management
Files are primarily used as reference sources. The project schedule in the ProjedrManagement Files is
used to determine effort and resource allocations for this process.

Figure 18. Sample Process from Cleanroom bngincering Software Development Process (1 of 2).

STARS IS-15 Software Process Case Study Preparation 55

===

Process Description The Software Specification Files contain the Usage Profile Volume, which
presents, in the form of a matrix, the transition probabilities which define the probability of a user
moving from any one program state to another program state. This matrix was developed by applying
a Markov model to all the identified program states that the software can reach. Addiuonally, the
Usage Profile Volume contains the stimuli to the system and the corresponding distributions for each

* stimulus in each state. Using the matrix and the stimuli information, the Certification team develops
test cases by completing the following sequence of engineering tasks until the completion conditi gls

are achieved: “
p?0 v“o

1. Modify the usage profile according to the Construction Plan. 50 \

2. Determine the requirements coverage of each state and each state transition.

3. Determine how many test scenarios are required to test the increment to the dglrcd level of
reliability, given the expecied rate of failures.

4. Specify the sampling scheme to be used to guide the testing for the increment. This includes the
decision of whether both control flow and data will be randomized or just control flow.

5. Develop test scripts, or test script generators that list the stimuli and stimuli values which complete
the program state transitions.

6. Develop test scenarios by creating random state transitions. Use the test scripts or script generators
to generate each program state transition. This task may include the random generation of data.

7. Based on the test scenarios generated in task 6, compute expected outputs for each test case. The
expected results form the basis of comparison for validation of test executions. 15

8. Setreliability targets and failure limits for the increment. E“

- \2
Measurement Data Generated Effort, State Data Produced 4_‘\'|'\E AS“R

Completion Conditions Each of the following questions must be answered affirmatively ind‘\r to
complete this process:

. Do test scenarios reflect the operational profile of the software to be t @&? ‘\0

. Can the results of executing all test scenarios be validated? “ \

. Have test passage criteria for the increment (such as number of test sccre@ ailures or reliability
goals) been determined and corresponding test information generated?

. Have expected results been generated, and passage criteria determined for each test case?

. Have sufficient test scenarios been generated to certify the increment to the desired level of
reliability, given the expected rate of failure?

. Is the increment complete according to the items listed in the Constmcuon Plan (Volume 6 of the
Specifications)?

. Has all state data in . > Software Certification Files been correctly added, changed or deleted?

- Have all pertinent reviews for this process been completed?

. Have all action items generated during reviews that pertain to this process been completed?

10. Have all information to be preserved been placed in the correct state data?

\O 00 ~J (=) [V N W N =

Keyword References
Test Script, Test Script Generator, Test Scenario
- Section 10
- “Engineering Software Under Statistical Quality Control,” IEEE Software, November 1990 (Cobb,
Mills)
- “Statistical Quality Control of Software System Development,” SET Course 066

Figure 19. Sample Process from Cleanroom Lngineering Software Development Process (2 of 2).

86 STARS Task IS-15 Software Process Tools and Techniques Fvaluation Report Version 1.0

The previous discussion has given the general benefits of using Cleanroom specifications. The specific ques-
tion to be discussed was: “what are the benefits of using Cleanroom specifications to model processes?” For
the CEPA prototype, the IR-70/E report, which described the Cleanroom process, was used as a basis for
the Black-Box Specification and User’'s Manual for CEPA. These two documents define the part of the
Cleanroom process that will be implemented/controlled by the CEPA software for the Cleanroom Software
Process Case Study. For this reason, the chain of argument will justify first the use of box structures for the
Cleanroom process, then the use of Cleanroom specifications to describe the software for process modeling.

The box structures description in IR-70/E presents all of the information necessary to descrnibe a process in a
convenient manner. Relationships between the processes were clearly described. Inputs to and outputs from
each process are listed, in terms of stimuli and responses. Entry and exit conditions for a process are listed.
In this case the entry conditions were completion of previous processes or preconditions” being true or false.
Exit conditions are the lists of Completion Conditions for each process, which also serve to validate that
engineering tasks were all properly completed. Project data (state data) that is used by a process is also
clearly listed. This serves to relate project activities to the creation, acquisition, or use of information during
the project. The list and organization of enginecring tasks is also given. The engineering tasks are the actual
units of work for engineers to complete with the Cleanroom process. Additional information that is kept in
the clear boxes for the Cleanroom process includes a process summary, a list of people who are to complete
the task, measurement data, and references to keywords.

In analyzing the processes found in the IR-70/E document, one sees that the necessary information to
describe the process is available. Most of this comes as a result of creating the black- and state-box views of
each process before making the final clear-box description. In that manner, the function of each process was
understood, as well as the information created or stored during that process. Some minor details are also
added in the clear box, to complete the description of the process. The hierarchy of the boxes was also
determined using the Box Structures algorithm, which created lower level processes as they were needed,
rather than creating them randomly and trying to find a heunstic way of connecting them.

Using two volumes of the Cleanroom specifications to specify CEPA was eased by the fact that the
description of the Cleanroom process had been done using box structures. The specification could proceced
from a fairly ngorous problem description. The details of the clear boxes also served as the basis for the
black-box subfunctions because where the engineering tasks left off in IR-70/E is where the specifications for
CEPA began. In effect, the Black-Box Specification volume drove a portion of the IR-70/E document to a
deeper level.

A portion of the Cleanroom process was selected for the 1S-15 task case study. The software parts of the
process were then specified in the CEPA specifications. The specifications were wnitten quickly and were
easy to modify, which is impressive given the amount of detail found in the document. This was a result of
the use of box structures for both the IR-70/E document and the CEPA specifications. The two perspec-
tives on the system could be used in combination to understand the functionality of CEPA as well as the
“look and feel” of the system, without assuming and accepting numerous implementation decisions. That 1s
an extremely valuable benefit.

As a result of the STARS IR-70.F and IS-15 efforts, the bencefits of using box structures and Cleanroom
specifications to model processes as well as to specify software have been realized. In terms of completeness
and clanty, box structures are extremely useful. Additionally, the savings in terms of cost and time of using
this form of specifications are also significant.

One measure of the effectivencess of a specifications document 1s the resulting implementation. UL'S, using
the spectfications, was able to create a fairly large and detaled the CEPA software system within the con-
straints of the I1S-15 schedule. This was attnbutable to having a Cleanroom specification that clearly
described the system to be implemented and the power of K1 Shell to quickly implemient the specification.
The result 1s a the CEPA system, consistent with the speafication, that was developed within the IS-15
schedule.

STARS IS-13 Software Process Case Study Preparation 57

Intentionally left blank.

58 STARS Task 18:15 Software Process Tools and Technigues Fvatuation Report Version 1.0

7.0 Software Process Enactment Experiment and
Demonstration Preparation

This section provides an overview of the “Cleanroom Engineering Process Assistant” (CEPA) concept devel-
oped as part of the “Cleanroom Software Process Case Study” and describes the implementation of the
CEPA prototype system, which permitted us to examine the process of developing a system to support the
enactment of a defined process. Finally, this section will provide instructions for installing the CEPA system
and a scenano for demonstrating the CEPA prototype system.

7.1 CEPA Demonstration System Description

One of the goals of the STARS program is to instantiate a Software Engineering Environment (SEE) with
program development and support tools, to facilitate DoD software development. CEPA is an integral com-
ponent of a SEE. To establish the relationship between CEPA and a SEE, we will review the basic elements
of a software project and role of a SEE in performing a software project.

7.1.1 Software Engineering Environments

Software development is organized around projects. A project is authorized to develop an item of software
to accomplish some mission that has been assigned to the software. A software projcct 1s an organized
undertaking to develop an item of software and all its associated deliverables. Software projects are com-
pleted by people (software engineers) who have been assigned to the project. The staff are provided with
resources to assist them in completing the project. These resources include:

* The software development processes that are to be used to complete the project. The assigned processes
define the techniques, practices, tools, methods, and data required to perform the process.

« Training materials and other reference materials for the assigned processes, techniques, practices, and
tools.

+ Workstations (including the associated system software and associated mterworkstation communication
facilities) on which the project engineers individually and collectively perform their work on the project.

» Software to operate on the workstations that helps the project engineers utilize the software development
processes that have been assigned to the project.

The resources included in the above list are integral parts of a process-managed Software Engineering Envi-
ronment (SEE) and form the basic requirements for an environment to support software cngineering.

Each project must have an instance of cach of these resources. The instances may vary only modestly from
project to project or they may vary a good deal. The beginning point for establishing a SET for a project 1s
the definition of the process and its associated tools and procedures. Once the project process is defined. the
other parts of the project SEE can be asserbled. Therefore, there must be two parts in the software that
supports a SFFE. The first part 1s the portion of the software that the process engineer uses to define the
process and then to assemble the project-specific SEE. The second part or the SELS software is the software
used by project participants (managers and engineers) as thev pertorm the project. 'The demonstration
system only provides capabilities of the second tyvpe of activity. but the work in speafyving the software has
pointed to a way to develop software to support the first tvpe of activity.

Software Process Fnadment Faperiment and Demonstration Preparation 39

7.1.2 CEPA and Software Engineering Environments

The SEE concept 1s that when a project 1s initiated, a process engineer{s) defines the process that the project
is to utilize. The defined process and its use of associated practices, tools, and project data are recorded in
the software operating on the workstations. In this way the project engineers and managers can easily use
the defined process and as a result concentrate on intellectual tasks of designing the software.

The view point taken by CEPA is that the processes to be utilized by a project are defined by the
Cleanroom principles <1, 3, 7, 11, 12, 18, 19, 20> . The specific process to be used by a project can be
documented by process engineers using black-box functions to dcfine the responses that engineers and/or
teams of engineers should produce at each state of the process. When using black-box functions, the func-
tion responses are defined in terms of stimuli that the process has already defined. In the CEPA view the
results of previous project design decisions reside in the project state data.

Before defining CEPA, the Cleanroom process was defined at the highest level in the IR-70 Extended project
<37>. Then to develop CEPA, the Cleanroom process was defined in greater precision by including com-
plete details for how to design and certify software using the Cleanroom process. This definition was docu-
mented in terms of black boxes in the CEPA specification <36>.

To put the CEPA work into perspective, the following repeats the SEE resources as defined in the previous
section and points out how the CEPA work relates to each of the resources:

1. The software development processes that are to be used to complete the project. The assigned processes
define the techniques, practices, tools, methods, and the data required to perform the process.

In developing the CEPA specification, black-box functions were used to document the detailed process
to be followed. In developing the specifications, the viewpoint taken was that of a process engineer
documenting the process for others to follow. Since this project was only to define and develop a proto-
type system, only a portion of the Cleanroom process is defined in the CEPA prototype specification.
CLPA experience indicates that black-box functions are ideally suited for defining and documenting
processes.

This experience points in a promising direction for developing a production version of CEPA for the
project initialization portion of a SEE. A process engineer will define the project process in terms of
black-box functions that the software can read and understand. Presumably this will not be a difficult
task, since generally a process engineer will be fine tuning previously defined processes. As a result, there
will be high levels of reuse of process defimtions. The software then uses these process specifications to
tailor itself to perform the process as defined. It seems feasible to develop software that performs in this
way.

)

Training materials and other reference materials for the assigned processes, techniques, practices, and
tools.

The CEPA prototype provides on-line access 10 the Cleanroom FEngincering Software Development
Process (SDP) handbook. Since the software engincers will be using box functions to define specifica-
tions and software, they will be able to easily understand the process definition as wntten in terms of
black boxes. This precise, easy to understand process definition facilitates the transfer of process know-
ledge.

3. Workstations (including the associated system software and associated interworkstation communication
facilities) on which the project engineers individually and collectively perform their work on the project.
The CEPA specification assumes the existence of workstations connected over an easy to use network.
Another assumption is that the workstations have sereens of sutheient si7¢ to reasonably hold images of
many related documents. Additionally, it 1s assumed that the workstation system software is capable of
exccuting multiple applications and that 1t facilitates people using multiple upphications such as “cut and

60 STARS Task IS:15 Software Process Tools and Technigues Fvaluation Report Version 1.0

paste” and “live copy and paste®.” The workstations are connected to a project state data server, where
all state data is maintained in a controlled environment.

4. Software to operate on the workstations that help the project engineers utilize the software development
processes that have been assigned to the project.

The software needs to provide three main functions. [irst, the software must coordinate all interper-
sonal work and individual work to guide the engineer though the process providing automatic access to
all the correct tools and data. CEPA is intended to this coordinating software. Second, the software
must provide the tools that the engineers need to use in designing the software, which is the object of the
project. The CEPA specification defines some 30 tools that software engineers need to access. Third,
the software must perform all project management planning and control activities.

The prototype CEPA provides (1) access to the some 30 prototype tools that developers and certifiers
require, (2) facilities for engineers to communicate with each other and work together in teams, (3) facili-
ties for engineers and managers to communicate about task assignments and project status, (4) an accu-
rate status report of the project by recording the status of completion conditions, so that only tasks for
which all prerequisite tasks are fully complete are dispatched, and (5) access by managers and team
leaders to project management and scheduling tools.

71.3 CEPA: An Overview

The mission of the Cleanroom Engineering Process Assistant is to enable software development organizations
using the Clcanroom process to produce high-quality products while increasing productivity.

This mission i1s accomplished by providing on-line assistance to all members of the software engineering
tearn utilizing the Cleanroom process. The Cleanroom Process (CP) has been shown to facilitate the devel-
opment of essentially defect-free programs and to increase the development team’s productivity. CEPA will
have the following missions in aiding members of the development team to use CP:

1. Minimize realization productivity losses, that is, reduce the time lost because supporting activities are not
properly coordinated. CEPA will significantly improve the probability that all of the prerequisites, tools,
and data that an engineer needs to do a task are available with no wasted time on his or her part.

2. Make it easy for the enginecr to follow the Cleanroom process and thereby obtain all of its bencfits.
3. Enforce the Cleanroom process in the most unobtrusive way possible by being user-friendly.

4. Make it easy for all levels of management to plan, schedule, and control all project tasks and to ensure
that the required reviews and venfications take place.

5. Make it casy to collect all required metnics for statistical control of the development process and better
estirates of development time and cost.

6. Update on-line state data, the data needed to develop the product, and make them immediately available
to all members of the development group.

7. Provide direct, on-line access to standards, tutonals, and other aids.

8. Improve formal and informal communication between the members of the group.
The net result of an organization’s equipping its engineers with CEPA is having in place a repeatable,
defined. managed. and optimi-ed software development process according to the SEL Maturity Capability

Ratings < [3>. By using the Cleanroom Process, supported by CEPA| organizations can expect to develop
essentally fatlure-free software with much less cost than is currently required to produce falure-nich software.

7 Tlinve copy and paste” refers to the ability to cut tables text or figures from different sources, and have them auto

matically updated, when the source files are modified.

Software Process Faactment Faperiment and Demonstration Preparation 01

7.1.4 Using The CEPA System

Upon logging into CEPA, one is presented with a screen corresponding to his or her role on the project. A
role corresponds to the responsibilities an individual can have on a project. For example, one can be a
development team leader or a certification team member. The next few pages, will describe “a day in the
life” of a development team leader. The screen that a development team leader is presented with, upon
logging 1n, is shown in Figure 20 on page 63.

62 STARS Lask IS 13 Software Process Tools and lechniques Evaluation Report Version 1.0

e
N
O/ PosSSTIOSIY -
2li79 pojpoeds wewubysse ysey Q————0 SHSVYL NDISSVY g
peuinies ejep ejess | Aiea - JoboTy o) ©
(nbowqns uoposjes) eieqg eelS <
IQEIIIPOIN ‘dM V1) H0OQeloN &
‘uossed U0 peseq §| 8jy} JO SIuBludO BJeUM - (JA U)) Noogpue &
103rg0 " NS g
LR 1 SNOILIGNOD 3
NOIS3a : WO
JOINVN "7 NOILI1dWOD 3A1303Y S
BIEQ 9)BIS 103r80 F78° SNOILIGNOD g
1003%ION_Iyo0apuen & NOIS3a ----3 OWO NOIL31dWOD NOIS £
: 40 INVN ..m R
) 103rg0 U0 SNOILIGNOD =
(smopuim NOIS3a -=--3 OWQQEKEQQ 3LVINOHID §
P 03N 1 QT £
' €
T NOILJIBOS3a : MWO 3SNOJS3H VO MIIA g
' ﬂ'..nl_ll_l_ll n3svlJ g
' ! ! : NOILS3ND : Z
pevenes S S RS S| A INVN ' mwv 170 3AT0S3Y =
H [
: “O——0 IO LINBNS €
: 1H0d3Y e
: O ————QNOILYOIILYID IAIZO3Y £
: ubisepe: esn ese 4511 ¥d o exe} {s8l) 140434 -
! ‘peacidde uoupuod uonejdwos | - (ubisepes esn) OoO———0 NOILO3YHOD ON3S 2 m
m NOIL3N1dNOD JO H3AVYITNVIL AJILON Ammt 14043y m)m.
: -uBi8opas e5n 85[0 Juoua .-OIIO NOILOIHHOD 34Vd3dd 3 =
' ‘Japesj wee) Ayjou op uey} ‘sessed 5
m MO8l wee;) - (ubisepes esn) 34NTIvd ..--.. m Wu 3009 1035HOD m z
: M3IIAZY WV3L QT0H 40 INVYN 4 5 <
(9¢°0d-22°p9) 095 uoidunj-gns Fees 2 3
005 (shongontreberors snprse)- 1 m MWO X08 HY310 3NIF3Y 3
.1} SmoaNMm : 3
T dmIson | dO13A30 193060 ' -
S Nois3g +---i Q=0 X08 BV310 €
40 3INVYN : g
<IWVN> :<103r80 NDISI0> i 0 —
X08 31vIS =
| g=—= :
' g
n : a
581) 3NA3HOS AUvad " MWO X08 YOv8 E
ISOIILIN 1D3r0Hd M3IA Lt AV3L JOVNVIN Dm
{821040) WY IL IOVNVI l.-....%nlllo ONLLIVA SHSVL)
II|IIIO (]
o
AONS HLIWS 30F -1X3L o
153
=2
=78

What first must be understood is that a devciopment team leader is also a developer. This is logical, because
there 1s no nced for a full-time “manager” for the development team, and thus, the team leader will also
participate in the actual development work.

As a team leader, the development team leader can assign tasks. This is done in two ways. By sclecting the
“Assign Tasks” option on the bottom of the screen, new tasks, such as creating the black, state, and clear
boxes for a module (a module is the black, state, and clear box along with all clear box-refinements for a
code component) can be assigned. Tasks can be preassigned in that they are assigned to be completed, but
are not available to be sclected by a developer until specitfic preconditions are achieved (such as the com-
pletion of a previous box). It is also possible that the team leader will only assign some tasks, for example,
only assigning the black box. The other assignments (or a change in a task assignment) for the module can
be sclected by again selecting “Assign Tasks” but this time selecting a specific task, all of which are visible to
the nght of the “Assign Tasks” option. If a specific task has not been assigned and is available to be
assigned, it will appear at the top of the screen, at the “Tasks Waiting” option. A task assignment selected
there can also be modified.

Team leaders also manage their team. In the CEPA prototype the only two management cap bilities avail-
able for the team leader are viewing project metrics and updating the schedule. Qther capabilities can be
added as CEPA moves towards a production system.

The developer tasks, such as creating or modifying black, state, or clear boxes, refining clear boxes or cor-
recting code, are available to be selected only when a specific design object is assigned or a failure report is to
be corrected. When a specific design object or failure report is selected, a menu appears that lists the steps
that are necessary to complete the activity. A selection of a devclopment step (the first option typically
available) will open up a number of windows that have supporting information and windows that will
contain the files to be developed. Files ure created and organized by the CEPA. Upon exit, the supporting
files are discarded (since they are supporting information, the instances do not need to be saved), while the
user 1s given the option whether to save the edited files in the state data repository or elsewhere. Whenever
files are edited, the user is given this sort of option. The benefit is that the state data is kept up to date
automatically. This removes most of the administrative responsibility from the user. One can leave this set
of menus by selecting an option from the main development team leader’s screen, which is also visible.

Options on the menu for a developer task in addition to development include holding a team review and
notifying the team leader that completion conditions need to be distributed. The team review now displays
only the cdited files (in a nonedit mode) and unother window which contains a file for the review minutes,
that will be stored in state data. Production versions of CEPA will use some sort of groupware that will
allow multiple individuals to participate interactively on the workstation. Once the team review passes and
the developer is convinced that this task is complete, the option on the menu is selected, and the team leader
1s sent a netdication.

The team leader sees the notifications next to the “Circulate Completion Conditions” option. Selecting the
specific object for which the notification was sent distributes a completion condition form to each member
of the tcam. These forms can be read. marked, and signed by sclecting the “Sign Completion Conditions”
option for the specific design object. Once completion conditions are signed by all team members, the team
leader sees the design object’s name next to the “Receive Completion Conditions” option. Selection of this
option will allow the completion condition sheets from each team member for the design object to be
viewed, which will allow the teamn leader to determine whether the task has been completed. Upon com-
pletion of the review of the forms. a pop-up screen appears that gives the team leader the option of consid-
ering the object complete or incomplete. It the complete option s selected. the design object's name will be
removed from the task it was next to and may lead to new options appeanng clsewhere on this or another
user’s sereen. I the incomplete option is seiected. then the option remains where 1t wus and must continue
to be worked on. When the pop-up screen disappears. the development team leader’s weicen 1s visible again,

The next few sentences will tllustrate what oceurs on the sereen. 11 a black-box "buoy” was being created.
buoy” would appear next to the black-box option on the sereen. Selecting "buov” would allow editing, and

64 STARS Tash 1S 15 Software Process Tools and 1 echnigues Pyatuation Report Version 1.0

when the task was completed and signed, “buoy” would disappear from next to black box. Of course, the
task to create the state box for “buoy” would be dependent on the completion of the black box, so “buoy”
may now appear next to the state-box option on the screen.

’

Questions and, or issues are a way of circulating and archiving the process of mncreasing the knowledge or
understanding in topics related to the project. Questions can be submitted, resolved (when a question/issue
is submitted for a user to resolve), or viewed (when the response is completed and the question is retumed to
the submitter). As the question or resolution is submitted, 1t 1s stored in state data as a part of the perma-
nent archiving of the project.

The development team leader is also involved with Certification Reports, which are the notifications from
the Certification team of the status of the coitification process for an increment, and Correction Reports,
which are netifications of corrections made by the development team to code being certified.

Finally, each engineer is given a number of general activities tha: can be done. Sending and receiving mail is
one of these options. Another is viewing the Engineening Handbook, which contains explanations of eng-
neering or management tas!s for the roles assigned to the user. For example, the development team leader
would have developer and development team leader entries visible in the Er aneering Handbook. The Eng-
neer’s Notebook is a diary that contains any information that a user may want to preserve. Filcs in the state
data repository can also be viewed by sclecting the “View State Data” option: Finally, a user can log off
from CEPA. The logoff option presents a user with a list of all information taken from state data and gives
the user the option of returning each file or keepiag it signed out for a future session. All five of these
options are made available continuously. For example, the Engineering Handbook can be visible while the
development team leader is assigning tasks. This would make tl.e team leader’s job easier, by not forcing
him or her to memorize all of the policies in assigning tasks.

The CEPA system and the tools running under CEPA handle many administrative and communications
tasks. CEPA allows an engineer to focus on the intellectual tasks of creating and venfying black, state, and
clear boxes (specification and design data).

7.1.5 CEPA Features

The Cleanroom Fngineering Process Assistant (CEPA)Y will automate and factlitate the features of the
Cleanroom process that pertain to organizing, planning, controlling, measuring, and directing a software
engineenng project.

The basic CEPA features include the following:

« The automation of some of the planning, scheduling, and task assignment activitics (activities that are a
considered a part of process 157 - Maintain Project Schedule -- and its precondition, C2 - Schedule to P
Modified Published) <37 >

+ Authonzing (enacting) tasks as they are s"ected to be worked on;
* Faalitating and archiving important communications between team members;

» Meticulously maintaining state data. (Using Cleanroom, software and other deliverables are developed
by continual modifications to state data. not by creating a number of mtermediate delit crables. Sinee
the state data s continually used and modified, mantenance i~ entical)

* Controlling access to and modification of project state datuy;

+ Faaltating the assessment of and sign-off of the completion conditions; (The commencement o @ sab-
sequent process 1s based on the fultiliment of all completion conditions for the preceding processes.)

« Controiling the interrelationships among tasks:

Sottaare Process Enactment Faperiment and Demenstration Preparation 63

+ Controlling and facilitating the access to state data and tools in relation to tasks. (A staff member exe-
cutes a task when assigned.)

Through CEPA, the staff member is assisted in accessing state data and a tool, if needed, before starting
work on a process. There is little direct communication between processes, where a response from one
process is a stimulus to another; the output of a task is put into state data and acquired by succeeding tasks
as needed. All information necessary for a task to be completed is found in state data.

Roles Represented in CEPA

The roles that are a part of CEPA are the following:
* Program Manager
» Software Engineering Manager
= Specification Team Leader
* Development Team Leader
» Certification Team Leader
+ Review Team Leader
» Specification Team Member
e Development Team Member
» Certification Team Member
« Review Team Member
« Process Engineer
e libranan
« Business Manager
« CEPA Adminstrator
The CEPA prototype will have the following roles” activities:
« Software Engineening Manager
« Development Team [eader/Development Team Member (one engineer who has both roles)
« Certification Team leader, Centification Teamn Member (one engineer who has both roles)
* Development Team Member

» Specification Feam Leader Specification Team Member (since Speaifications are assumed complete, one
of the other participants can assume these roles also).

(The other Cleanroom roles will show on role selection menus, but a selection of such an item will present
only a text deseription of the role))

Processes Available to Roles

Ir terms of menu options that the roles can select, the following are wvalable for all of the roles mennoned
above for the protetvpe case study demonstration scenano:

« Do asstoned fasks (for each roles the task topes will be desenbed 1 creater detand bolow)
M

o Sebmat Question Isae

00 STARS Lk IS 13 Saltware Process Taols and Fechmgues Boaliaten Report Veracen 10

« Resolve Question/Issue

» View Answer to Question/Issue

 Circulate Completion Condition List

e Mail

« Modify Engineer’s Notebook

« View Enginecring Handbook

» View state data

» Logoff.
For each role, the screens are similar to the development team leader’s screen that was previously discussed.
The descriptions of the tasks are also similar. For that reason, only the screens for the other roles will be

presented on the subsequent pages, as (Figure 21 through Figure 27). Interested individuals may want to
refer to the CEPA Specifications < 36> for a more detailed description of the capabilities for any role.

Software Process Fractment Dypeniment and Demonstranon Preparation 607

%OO0GoION

O0QpPUEH

L

Hobo1 O
(e1qeitpoiN ‘dM 1) doogeioN O

‘uossad uo paseq i ofi jo s esaym - (dM 1) yoogpueH

HIOVNVIN ONIHIINION3I
34HVML4OS NOISSY

103ro"d Ol 44V.LS NOISSY

103rodd 31v3yo

en

SH3SN 3NIJ30

103r0Hd 3NI43a O
o Vd30 HILSININGY

‘HLIWS 301 *1X31

{<S)SVL NOLLVHLSININGY vd30>

CEPA Administrator Screen Format.

Figure 21.

STARS Task IS-15 Software Process Tools and Technigues | valuation Report Version 1.0

68

eleq a1Lls

00Q3ION

H00QPUBH el

'uosiad uo paseq si 8}l jo siue

SWv31L Ol
d44v1S 103rodd NOISSY

(s84) 31NA3HOS 3LvaAdNn
SOIHLIN 1D3rodd MIAIA

221042) 103r0Hd IDVNVYW

pauifie: ejep ejess e Ajiea - jjobo (o)

103rdo
NOILVOI41LH30
40 3NVN

103rd0
NOILVDI&1LH3D
40 INVN

103rgo
NOILVOIJILH3O
40 INVN

NOILdIHOS3A
n3sm
NOILS3NO
A8 3WVN

cememeneeeseseneaanes o—0

:cmEn:mco_«uc_o&mﬁooﬁm
(alqeiipoy 'dM Ul) %00GeioN %
uoo a1aym - (M U1j NooqgpueH

e

e, SNOILIONOD
NOILITdWOO 3AI303Y

H SNOILIONOD
NOILITdWOI NOIS

W D SNOILIGNOD
OIL3TdWNOD 3LVINDYID

000 OO

.r--l---‘r.-

ISNOJS3H VO M3IA

1O 3A0S3Y

000 OO0

[}
r--.--J-------

Y

VO 1INENS

O

1Hod3d
O ————Q NOILYOI4ILHIO 3M1303Y

Q———0O SINIWIYONINDISSY

103M0Hd 3IDVYNVYIN

AONA HLIWS 30" 1X31

¢ Manager Screen Format.

2. Software b ngineerin

Figure 2

69

Software Process Enactment | xperiment and Demonstration Preparation

Bleqg aleis

00G3I10N

HOOGPUEH [

581) IINAIHOS 3LvdAdn
[SOIHLIN LOITOHd M3IA

(931042) Wv3L JOVYNYN

(smopum dm)

Ll
pauin

(nf

‘uosied U0 paseq si 8ji) j0 SIUIU]

*Japes| Wwea) uogeoyioads

ay) 0} anbiun SYSE) BLWOS 8ABY SB ‘PO U3eq
AiBuimouy aney sysey Jayioads Jo saquinu y “jieiep
18816 Aue ui uoneNSUOWSP Y} Uy 8q 0} PapUA| JoU
Alreuibuo sem) eou|s ‘atajdwuoouy) S| 801 SiYL 810N

SNOILYIdI03ds 3SV33Y

s3xod
A0V1E LINIWIHONI HSINavLs3

SIN3W3LONI IWNVN

<123roHdd> :S31ld NOLLYIIHIO3dS LHOdX3

0%/9 pessnosip
g petjioads juewubisse ysey Q—————0 SHSVL NOISSY
a1 €lep ejejs [|8 A)iea - jobo (o)
bawqns uoie|es) ejeq eiels e}
3|qeIIPOW ‘dM V1) ooqeioN ()
2 ataym - {(dM Ul) oogpuey
e
a0/ O Wv3L IOVNYW
..........Ho.m._,mo : %IO ONILIVM SHSVL
NOLLYDIJI03dS ‘ Wu SNOLLIANOD
40 INVN *°7"1 w NOILITJIWOD 3AIZO3Y
103r80 Al SNOILIONOD
NOILYOIIO3dS === WO NOIL31dNOD NOIS
40 3NN L0
103rgo e SNOILIANOD
NOILYOIJIOAdS ----1 O 01L3TdWOD 3LVINOHIO
40 INYN CQ
mase
NOILdIHOS3a m mw ISNOJS3H VO M3IA
nasvii O
NOiLS3n0 :
AGINWN MWO VO IAT0STH
[]
“o—0 1/0 LINSNS
s34
O QO NOILVDIID3dS 1HOdX3

O——0 (s84) NV1d NOILONHLSNOD - 9 "IOA

oO———O0 (sgL) 371404d 3DVSN - § TOA
o——-0 (saL) NNV S.H3SN - ¥ 10A
O ————fsaL) NOILYDI4IHIA XO8 HOV18 - € T0A
oO———0 (8L 93dS X08 OV - Z TOA
o——0 (S81) IWNI0A NOISSIW - 1 “TOA

AONE :HLINS 30 1X3L

Figure 23 Speafication Team leader Screen Format.

Software Process Tools and Techniques Fvaluation Report Version 1.0

STARS Task 1§15

70

71

Software Process Enactment Experiment and Demonstration Preparation

[N
* 02/9 pessnosip
L W9 paijoeds juawubisse 58|
eleq aieis ;
{OOG3ION 103rg0 ;
%009PUBH e NOLLVOIJILEID ----4 WO SHSYL NOISSY
{smopuim , 40 JWVN [&
) peuses iep ele)s |8 Ajuea - yobo o)
3“353 co_.oo_omvvﬂmo seis O
3(qelIPON ‘dM Ul) X0oqeloN
[‘uosiad ua paseq sy o)1) jo siuajucd eieym - (M U1} ¥oogpueH Q
H HE v : Hew
LRI S o roea-
T 193rg0 ; SNOIUANOD
P (S8 1HOd3Y NOILYDIHILYD JWVdIHd NOI Eww__ wnww eeed mwo NOILITINOD 3AI303Y
$o it
B omopuman) S oo 18 oo
{1 |eeeecvaseeeeey SNOILOIHHOD ILVAITVA NOULVaIdILE3D 1 §
I ' 30 INVN Caszs
P Smasom | (saL waLsAs aung 103r80 w SNOILIGNOD
N : NOILYOIILHID ===-1 WQo_hm._azoo 31VINOHID
L P _{sgL) Auvyan 40 INVN u.o
: 34VML0S 3SVI13Y 34 NIVINIVW |~ FresE
: ! qu ISNOSIH VD M3IA
: <X ONI> :<$¥SVL NOLLYOWILHID 13nANOD> NOILJIHOS3a 'O
; nevt ... o
' IASH WV3 NOILSAND : OWO VO 3A70S3Y
: M3IAH 3L A9 INVN i O
' SOIHYNS0S 1§31 31vay0 O~——0 YO LINBNS
: 140434
: S1diH9S 1S3L 31V3L0 O~ NOILVOIJILH3O ON3S
] eecccceccosana ="
: : ' H SHSVL NOILYDIAIIHID
o]l smoanm't M3IAIE V3L yagnoN OVO LONANOD
i dmM3S010 ! NVd 1S3L ANINIHONI --..q
i * A8 3WVYN i o .
- : MSVL
30O AOHHVW L OVO NOILVOIJILE3D NOIS3a
<X ONI* :<SNSVL NOWVILILHIO NOIS3a> o} ’e) NV3L1 3DOVNVA
103r90 O
541 IINGIHIS 3Lvadn NOILYOIJILHID ... ¢ m
30 Strvn L WO ONILIVM SHSVL
SOIHL3N LO3rodd M3IA - ——
{931040) WY3L JOVNVN AONY ‘Hiws Al

Figure 24. Certification Team l.eader Screen Format.

BleQ aels

00GaION

18316 Aue Ui uonesiSUCWAP 8L U} 8qQ 0} PaPUBIUI jOU
AirewiBuo sem 3 aous ‘a181dwoouy S) 8101 SIYy) 910N

}oogpueH

IEW (n

"uosiad uo paseq si 8|)j j0 siusjud

‘paNiwo uaaq
AiBuimouy aaey paisi| Apealje sysel ay} Jo awos
jo uondiuosap pajielap aI0W e pur ‘suonedlioads
ayj o} sabueyo Bupjew se yons sanss| ‘|iL1op

pauin}ai eiep siels || Ajuea - jobo

laWgNs UoID9|es) eje(] eielS

8|GRIIPOI ‘dM UI) %00qeloN
0 313ym - (dM u1) soogpueH

o

o
8

Iew
193r80 ' o
NOILVDII03dS ' WO SNOILIGNOD
403NWYN "7"71 m NOLLITdWOD 3A1303Y
193rg0 roN SNOILIGNOD
NOILYOIHIO3dS === mWO NOILI1dNOD NOIS
40 INVN L0
103rg0 T O- SNOILIONOD
NOILVOIIO3dS ==-=-=1 OWQO_E,_%OQ 31VINOYI0
40 3NWVN LLQ
v O-
NOILdI¥OS3a ' OWU ISNOJS3H VO MIIA
nasvl ... O
NOILS3ND '
AGINWN MWO VO 3AT0S3Y
“——0 VO LIWeNS
O—C0O (s81) NV1d NOILONHLSNOD - 9 “T0A
oO————O0 (sa1) 31140Hd 39vSN - § O0A
o——-0 (SAL) NNV SH3SN - ¥ J0A
Q ——————(SAL) NOLLYIIJIHIA XO8 %OV18 - € 10A
o—0 {s81) 93dS X08 XOV19 - Z TI0A
O——0 (S81) IWNTOA NOISSIN - | "TOA

AONEA ‘HLINS 20f :1X3L

Figure 25. Specifier Screen Format.

STARS Task 1S-15 Software Process Tools and Techniques Lvaluation Report Version 1.0

72

BleQg aels

{00Q3ION

%00qpueH

e

"uos.ed uo peseq s ejl} jo siuo|

(smopuim gm)

poeccand
reeaa

099
Amco.amm.._s

ubisapai

asn asja ‘1sif o1d yo ayel ‘panoidde
uonipuod uonad|dwoo ji - (ubisapai asn)

NOILITdWOD

40 H3Aav31 WvV3L AJILON
‘ubisapas asn as|e ‘1epea)
wea} Ajou op uay) ‘sessed
Ma1IAa1 wea) jf - (ubisapal asn)

(9£°09-£2'09)
uonouny-gns 8as
ebeors-apy ysej-
SMOANIM
dM 3S010

-t

mmedee
moemces

M3IA3H WV3L AT0H

d013A3Q

<INWVN> :<103rg0 NOIS3a>

peuJ

103rg0
NDIS3a
40 IWVN

NOILdIHOS3a
n3gv
NOILS3NO

A9 3NVN

1H0d3d
ELRE]
40 IWVN

193ra0
NOIS3d
40 3NVN

nuawWgns uoieles) eleq elBis

(81GE11IPOY ‘M 1) %00QBION

hieJ ejep ejels [[e AyseA - joBoq m
100 a1aym - (dM Ui) yoogpueH ()

lew Q

-—————
L]
L]

SNOILIGNQD

Q
-eed mWO NOILI 1IN0 NOIS

MWO ISNOJSIH /0 MIIA

preecadecacana

Q
qu /O 3ATOS 3

5
Q——=0 1O LINENS

o)
(S8.1) LHOJd3H NOILO3HHOD
o——-O JHVd3Hd
MWO 3009 1234H0D

X08 HvY310 3NI43Y

X08 "v31o

preccceccacenctaccccacccncca.,

X08 31vis

Ty

X088 X0vd

AONg ‘H1IWS 301 :1X31

tigure 26. Developer Screen Format.

73

Software Process I nactment Fxperiment and Demonstration Preparation

EleQ ajels

{00QRION

pauinlal

%00gqpueH

[

)

L]
eeleaccnsvvohoncance 1}

I'ew

‘uosiad ua peseq si eji} Jo mEmﬁ

S81) 1H0d3H NOILYOII1H3D 3UYd3dd

S1S3l NNY
SNOILO3HHOD 3LVAINVA

SMOANIM ¢ (SE1) WILSAS a1INg

............... : (sal) A”HvHEN

IYVYML40S 3SVITIIH 3Hd NIVLNIVN

<X ONI> :<SHSVL NOLWLVIIJILHID LONANOD>

---J---1

L)
L]
.
[}
L]
)
L]
1
1
[)
[
L]
L}
L}

M3IA3YH Wv3L

SOIHVYNIOS 1S31 31v3yd
S1dI40S 1631 31v3H)
TTenmmoeseees K M3IA3H Wv3L
NV1d 1S3L

o
=
w
172]
@)
3
(&)

4

T130ON AOXHVYIN

elep ejejs
118 AgseA

- jobo1 0

nuewqns uoloejes) eleq ejeis o

(s1qelipOpy ‘dMm u1) xoogeloN O
uo03d 81aym - (dM Ul) NoogpueH

" lley
103rg0 | O«
NOILYOIJILHID ----4 OWO
d0awwN L]
NOILdIHOS3a :
n3asv ¢
NOILS3ND "% Q
AGINVN mWo
o—0
e
1 O
u3ENNN |
LINIWIHONI ----4
A8 3WVN mo
movO

SNOILIGNOD

NOILITdWOI NOIS

WVWO 3SNOJSIH /0 M3IA

/0 AACS3Y

YO LINGNS

SHSVL

NOILYDIdILH3D

10NANOJ

SYSVL

NOILYDIJILH3D

NOIS3d

AONg ‘HLUWS 30r :1X3l

<X ONI> :<SHSVL NOWLVYIISLLHEID NOIS3a>

7. Certifier Screen Format.

-

STARS Task IS-15 Software Process Tools and Techniques Fvaluation Repert Ver jon 1.0

Figure

74

7.1.6 CEPA Tools

The CEPA system handles a number of the control flow issues pertaining to the Cleanroom process. Addi-
tionally, tools must be made available to assist engineers in completing their assigned work. These tools are
not actually a part of CEPA, since different tools that satisfy a function can be interchanged. The key point
of CEPA is to provide a useful suite of tools to the engineer to support his or her Cleanroom engineering
activitics, as they are needed in following the Cleanroom SDP.

Tools may be invoked to assist an engineer in completing a task. In the prototype CEPA, many of the
necessary tools are mimicked by WordPerfect. For a production CEPA, actual executable tools are required.
These tools assist an engineering in completing a specific part of the Cleanroom process. The tools do not
casc the creative tasks for engineers, but they ease organizational and administrative issues (actions that can
be automated), so that engineers can focus completely on the creative tasks. The types of tools necessary for
a CEPA include the following:

< Box Structure editor to facilitate the design of black, state, and clear boxes, as well as refinements to
clear boxes.

« Verification aid to focus the analysis and reporting that 1s involved in the vernfication process.
« Markov analysis tool to assist in creating the usage profiles.

+ Test scenario generator to automate the process of selecting and generating test cases.

« Correctress aide to assist in process assessment.

 Statistical tools to aid in computing failure and mean-time-to-failure data.

» Project Planning and Scheduling tools to aid in developing plans and schedules.

* Process Management and Control tools to aid in the day-to-day flow of the project entitics through the
defined processcs.

Each tool would obviously be tailored somewhat to fit into the Cleanroom process. The intent would be to
build CEPA in as general a manner as possible to eliminate the need to tailor a tool for CEPA. For
example, issues such as reading from and writing to state data would nced to be handled by CEPA, not by
the tool.

7.1.7 Using CEPA (continued)

CEPA is used by selecting options visible on a screen that is defined for a specific role. The actual options
have been listed 1n the sections above. Conceptually, selecting an option can be considered to be sclecting a
work unit or tosk to work on. Selection of any option will cause an external tool or feature (the name given
to functions to complete tasks that are a part of CEEPA, not an external tool) to be activated, with the neces-
sary corresponding information. Completion of a task will allow necessary data to be saved and will retum u
user to the general screen for that user’s role.

It must be emphasized that although any specific unit of work can be started by selecting a single screen
option, to create and complete a unit of work multiple screen options may need to be selected by a number
of users. Lor example, creating a black box really entails the sequence of ereating a task assignment to create
a black box (done by the development team leader), selecting the black box to create, editing the black box
(both done by developer), and conducting @ team review for the black box (done by team). Once these steps
are successfully completed. the developer must prompt the development team leader to distnbute the com-
pletion condittons for the task, then upon distnibution by the team leader. the entire development team mnst
sign completion conditions, which are retumed to the development team leader to decides whether the tusk
hus actually been completed. At that point. the tusk disappears from the Tist of tasks to be completed. Of
course. the completion of one task may be the precondition tor another. For these reasons, tasks should be
viewed as a sequence of activities when considening the ife evele of a spealic task, from creation to com-

Software Process Fonactment T xpeniment and Demonstration Preparation 73

pletion. The scquences of activities necessary to complete different types of tasks, with specific references to
the CEPA specifications (such as stimulus numbers), appear on the subsequent 9 pages (Figure 28 through
Figure 36).

76 STARS sk IS 15 Software Process Tools and Tedhmiques ©valuation Report Version 1.0
1 }

vIEp 9)EIS OJUI 0F SUWIAN SUBIW Iadojans(01 [1e]N puag

A

mv_mmhaozsm>uo<okmu_:mousooxm
/ 3811 5,39d019ASP WOy JUSUIUSISSY JSBL 9A0WSY _ YO

NOION *
suontpuo)) uonsjdwo)) aA1909Y - 91S
p OISNY/ETAMS >

| «
suonipuo) uonajdwo) ufiS - 878 g A0ISIY/CTAMS
-

—
suonipuo)) uonajdwo)) ajenon) - $1S

e
o .—o_.« Jope P 0ISU/HEAMS

spp.g xog yoojg Wed], 1dwoid -0pS

Jw?om ureay - »omqw.asm xog yovjg

s1oquIawl wred) juswdojaasp
IT€ 03 JUIS P MIIAI 135 0 JI]N
%*

sdaig xog oeig - 09S

210389
X0g HOe[Y 31D - 65 g— vo>o_:o<m<%_wm“w%=mou
> ‘IHIE»E:H%< Jsel - 9TS
J
TRIT SElELETq IaoTedsT(q 9peaT] Wea],

JUomdoaA9(g

Figure 28. Using CEPA Facilities to Perform a "Black Box Task”.

77

Software Process Enactment Experiment and Demonstration Preparation

BIEP 9JE)S OJUI 03 SWd)! SUBIUI ,

A

SYSEL, MON 9IBANOY O, S3[NY INOAXH

Iadopaaaq o1 jieN puag

/ 1811 s,30dojaAdp WO WAWUTISSY YSEL 2A0WY _ YO YO 10N +

— - OISIY/ETAMS

| «

suonipuo) uona[dwo) udiS -'87S g A0ISNY/TTAMS
-

suonIpuo) uona|dwo)) 31393y - 91§

suonipuo) uonadwo) .o - 1S

™ aosay/pedms ™

DD 10} 1opea]
urea M. dwoig -0pS
SI1DA X0g 910§ $35SD X0g 21DIS
. ?o?om weay, - 6LS s1aquisw wed) Juawdojaasp

[[& 01 1U3S B MIAAII 1S O] [IB]N
Y

sdaig uonouny xog a1E1§ - 998

b,

sdaig eie(xog 9138 - $9S

!

xog
JIeIS AR - €95 " A0ISY/0IAMS
W PIASIYOY SUOHIPUO))
*
TIRIT TadopPAaq TaUoTedsicy

~—— Juowusissy Jsej - 97S

I3peo| wieay,
TUAWdO[oAS(]

Figure 29. Using CEPA Facilities to Perform a “State Box” Task.

STARS Task 15-135 Software Process Tools and Techniques Fvaluation Report Version 1.0

78

€1ep 31)S OJUT 0F SWIA SUBIW SYSBL MON 21BAIIOY O], S9|nY 91ndaxyg -
/ 381 5, Jod0[oASp WOy JUIWUSISSY YSB], 9A0WIY |_ YO

Jadopaaa(g 01 1By pussS
YO ION +

> suonipuo)) uonajdwo)) 9A1209Y - 9[S

o UOINY/ETAMS — >

*

suonipuo)) uonadwo) uSIS - §TS OIOUTZAMS
-

r P u0ISIY/PEAMS ’

DD 10J Jopea]
S| xog upa)y WEAL wpod -0vS
M. *:3&6& xog 403])
MILAIY W], - §LS stoquiaw wed) Juswdojaasp

*
[B 0] JUSS JBP MIIAI 138 O} IR

%k

sdaig xog 18910 - 7LS

X0g Je3[D d1eald - LS -~

A0ISNY/OTAMS
/) PRASIYDY SUONIPUOD)
-
*
TadoPAaqg Toydredsiq

suonipuo)) uons|dwo)) .o - 1S

awudissy ysel - 97S

Topea| Wea],
TUAWdO[9AS(]

Figure 30. Using CEPA Facilities to Perform a “Clear Box™ Task.

79

Software Process Enactment Fxperiment and Demonstration Preparation

P S L g TN -, — Mg

AD-A255 945~ SOFTWARE TECHNOLOGY FOR ADARTABLE RELCTABLE §'1’§fEf1§ 2/3
(STARS> PROGRAM SOFTWA. . (U) IBM FEDERAL SECTOR DIV

W GAITHERSBURG MD W H ETT 20 SEP 24 03705-001 XC-AFSC

JUNCLRSSIFIED F13628-38-D-0032

umg

g
= [lzz

=
=

‘ﬂ“ llll(-“

e i
i

s = e

fli2s flos e

¢
s

BIEP 91B)S OJUT 0F SWI9)N SUBSWI 4

A

suonipuo)) uondidwo)) udis - .wmmlllnl A10159Y/TTAMS
-

SIDf JudwauLfay

SYSBL, MIN 9IBANOY O SOy AN0dXyg
/3811 s 1odo[aA3p woly JUSUTISSY YSB L 9A0WIY _ YO

g H0ISY/ETAMS

r

Jadojaaa(01 [IeIN puag

MO ION »

suonipuo)) uona[dwo)) 941903y - 9[S

suonipuo) uonddwo) aenoai) - H1§

L —— Smammeeeey
30 10§ Jope] AU0ISIY/YEAMS
urea |, 1dpoid -QpS

*

_. SISSDJ IUdWUL2Y
'y

IAY Wed [, - 6LS
sIaquiowr wied) juswdojaasp
J& 03 JU3S 3)BP MIIA 13§ O} [IR]\

*

XOg 181D Uy - LLS

i

UwI3IsSY yseL - 9ZS

Topea| Wea],
TUSWAO[3AS(]

xog Jea[) o_EMm “9LS — 20I1SNY/QTAMS
PRASIYOY suonipuo)
-
*
o TAUoTedsIq

Using CEPA Facilities to Perform a "Refinement” Task.

Figure 31.

80 STARS Task IS-15 Software Process Tools and Techniques Fvaluation Report Version 1.0
p

B1EP 9)BIS OJUT OF SWISY] SUBIW ,,

/ 1511 $,33dO[9A3D WOy JUSWIUBISSY S8, 9AOWY YO 10N

> suonipuo) uona[dwo)) aA1909y - 91§
| — - 10ISNY/ETAMS "
*

suonipuo) uonojdwio) uiS - 87S o

SYSEL, MON 91BANOY O, SI[NY 9IN0aXy Aol_ Iadopaasg o*:«i puas
XO

UOISNY/TTAMS _

suontpuo) uonadwo) sendIL) - 1§
—p JOISNY/YEAMS

JD 10§ Iape]
wes], 1ol -ovS
S]IDJ U01122.440) *:
§35SDJ U013232.440.)
* MIIAY Wred], - 78S
’ SIaquIow ures) Juswdojoasp

1€ 01 1USS JJBP MITAQI 135 O] [IEJN

ajreq osoﬂ - 18S

AU0ISIY/OTAMS

JPOD) 10110 -

POD >U mellvo%mﬁi suonipuo) wodoy ainpieq podoy amjiey
-+ 8:&.&5 e anquysig

*

suoday UonBOII)) JAII0Y - OES

e IETETa ToUOIedsIq Iopea wea],
900RA(] JUouwIdo[aA3qg

Figure 32. Using CEPA Facilities to Perform a "Correcting Code” Task.

81

Software Process Enactment Experiment and Demonstration Preparation

BIEP 3J€1S 0JUl OF SW)I SUBAU

A

SuONIpuo) UonIdwWo)) USIS - TS SIOISO/ZZAMS
. -t

mu_mﬂ.Boz8«>zo<o&mo_=mo§ooxm_
/3811 s JadooAsp woly JuauruSissy ySeL 2Ao0woy _ YO

o JUOIY/ETAMS — ™

| *

Bao_?omozus_c:um
MO ION *

suonIpuo)) uona[dwo)) 91909y - 91S

suonipuo)) uonad[dwo)) Ae[noi) - 1S
P239]dwioo SI ySE) 1By} UOHBUIULIAIN(]

SIID] MI142Y

_. §ISSDY MY
Bw_>om welx - €6S
* SI9QUISW Ured) UOiIedIJIlad
{2 01 1U3S BP MIAA 13S O [Ie
ES
SOLIBUIDS 1S9], eI - T6S

s1duog 159 L Qweu - 16S

SJID.| M2142Y .Hw SISSDJ MI142Y
——— MalA%Y WAL - 068

).
Ue[d 159], 91eal) - 8S

).

ISPOIN AOYIBIA uO*_&,H - L8S

SYSBJ, UOHRIYIII)D AISNY/OTAMS
udisaq - §8S " POAdIYOY SUOHIPUODg—

A .

_I) TaY0TedsT(]

L

WIUIUBISSY yse], - 978

Topea] wiea],
uonesna)

Figure 33. Using CEPA Facilities to Perform a "Design Cerunication” Task.

82 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

ejep 93els ojul 03 SWSN SUBIW 4

SYSBL, MON SIBANOY O, S9[ny Anoaxyg
/381 s Jodojaasp woxy JUQUIISSY YSB], SA0OUID

d _MO

BaoBSQo:«En:um
NOION *

suonipuo)) uona[dwo)) 341923y - 91S

> suonipuo)) uonajdwo)) usig - 8CS t—— 2101SY/TTAMS
~

g OI0ISNY/ETAMS

SuonIpuo)) :ouoEEoU_ QBN - $1S

pa1aydwos st yse ey uoneuIULLIaQ

uoday uonesy i)
aredard - 16S
* uodas aredaid o3 s1aquiaw
TV.,E* 9] UONBJIJILID |[B O JUSS [l
]

§159 -
suoday anpie WL :Mm 965
*

SUOIIdALIOD) AEPIBA - 66S

f.

wasg piing - 86S

Ao

AIe1qry aremyjos
asea[y-aid ESE«*,— - §6S

SIS, UOHEBI 1Y) I0NPUO)) - $6S

-

NI PR

AOISIY/OTAMS
PAARIYOY SUONIPUOD

TaRyedsiqy

JUAWUBISSY JSeL - 9ZS

Toped] Wea],
UoneIna)

Figure 34. Using CEPA Facilities to Perform a "Conduct Certification” Task.

83

Software Process Enactment Experiment and Demonstration Preparation

EIEp 3E)S 03Ul 03 Jomsue pue uonsanb suesus ,

siay10
0} Juas
uonnjosoy
;g amsuy imm domMsuy jouun) ———— - PV A LS
. 1 A0ISIY/AMS |
:0
| XXX ‘0L p4vio,] / S1 domsuy yoedsiq
> *
uonsanQ) 2A[0sY - §S
T aosew/sams
Joyoedsig
+ ~&—"uonsand nuqng - ¢S

JAIL TOA[0SIY Ionuqng
JnssS[juonsan(y anssp/uonsang

Figure 35. Using CEPA Facilities to Perform a "Submit, Resolve a Question” Task.

STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

84

(syseL
uonedJINd)) Suronpuo))
935) Syse], uonedyIud)
4 10NpU0)) - $6S
—
vodoy — - Joydredsiq
uoday — UONJ3ULOD) PUdS - £¢S
uonoauo)) aredald - €S
wed) Juswdojaasp
£q paAjosal u9aq dAeY
suodax qunjrej jje 30U
yse], apo)) Suroau0)) 995)
pOD) 193110 - 08S
A0ISIY/OTAMS
-
(a1njieq 109110D))
usurudIssy yseg, -
} ISSV JSel - 9CS
AU0ISY/SAM S YAMS
2yoedsi§ ——
uoday uoneoynid)
aredayd - £6S
I9peadT] Wweaj, Jauugng
TINTT, Tedofdasq SIEINGIVEN g 110daYy 2Infie]

Figure 36. Using CEPA Facilities to Perform a "Failure Report Correction” Task.

85

Software Process Enactment Experiment and Demonstration Preparation

7.1.8 Conclusions and Lessons Learned

The prototype CEPA delivered at the end of the S phase 1s only a prototype of a portion of the software for
a SEE and all tocls are only prototype tools. The prototype CIFPA provides an impression of what the
software for a SEE should be like. “Look and feel” issues as well as functionality issues can be evaluated.
The Cleanroom process is visible. A number of desirable functions for the software portion of a SEE are
visible and available.

With only a modest amount of additional work the prototype can be used productively to support a
“friendly” project.

However, considerable work will be required to develop CEPA into a production quality system to support
substantial-sized software development projects. To accomplish this, the following tasks need be performed:

1. Enhance and use the prototype CEPA along with rudimentary tools to design software on a real project
to learn about look and feel and required functionality.

2. Specify a complete CEPA.

The first specification should be for a CEPA implementation in the same style as the current implemen-
tation. Once that has been done, it may necessary to implement such a limited version to gain expen-
ence or it may be possible to directly proceed to specifying software that can customize itself.

3. Specify and implement a complete customizable CEPA.

There need to be two parts to a production CEPA. The first is the software that is used by people on a
project after it has been customized for the process that has defined for the project. The second is the
software that reads the process definition and then customizes the software so that it defines the project
process. No design work has been done on the customizing portion of the software, so that some inves-
tigation should be performed to determine how to go about developing such software.

4. Develop versions of all the required tools to support Cleanroom engineering.
5. Adapt planning and scheduling tools to work within the CEPA environment.

The good news from the S15 project - CEPA work is that it is clear that it is possible to develop SEE
software to support the Cleanroom process since 1t is a defined process.

The bad news is that CEPA definition work reinforces the proposition that a prerequisite to automating a
process is that the process must be rigorously defined. The traditional trial-and-error method of software
development is not and cannot be rigorously defined so it may not be possible to develop useful SEE soft-
ware to support such processes.

86 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

7.2 Overview of the Process for Developing Process Applications in
Kl Shell

The knowledge acquisition and knowledge engineering tasks involved in defining sclected aspects of process
knowledge are fairly manageable. This is due, in part, to the common understanding of generally accepted
notations to support the modeling of process knowledge. Chief among these notations i1s IDEF0 an activity
modeling graphical notation language developed on a major U. S. Air Force program, the Manufacturing
Technology (MANTECH) program. The IDEFQ notation is mandatory for use by participants of the
Industry Modemization Incentive Programs (IMIP).

The basic IDEFQ notation is illustrated in Figure 37.

CONTROL / STIMULUS
PROCESS TASK (ACTIVITY)
INPUT TO PROCESS OUTPUT OF PROCESS
TASK TASK:
(DATA/INFORMATION)
MECHANISMS FOR
PROCESS TASK

Figure 37. Form for an IDEFO Process.

An IDEFO activity, represents a process task in a process model. The input and output data flow represent
data required by a process task and data or information produced as a result of the process task. The
control or stimulus flow indicates signals or events that permut the process task to be perfformed. The mech-
anism flow identifies the mechanisms and tools required for performing the process task. Modeling
notations, such as IDEFO0, are widcly available for use and provide a starting point for supporting process
knowledge acquisition.

Software Process Enactment Experiment and Demonstration Preparation 87

The development of process models using graphical notations such as IDEF0 addresses the development of
process models at the “activity level,” and as such, the development of activity threads for a project is referred
to as “activity-based process modeling.”

Given a specific model for representing the process knowledge acquired, for example, IDEFO0, the next step is
to transform the IDEF0 diagrams into a form that is cnactable by a process enactment mechanism, such as
K1 Shell. In this process, numerous clarifications to the meaning of the process models developed will be
required. To enact a model, an appropnate subset of activities (or process tasks) must be presented to the
users, according to their project responsibilities. This is the concept underlying the role object in the KI
Shell. A K1 Shell method consists of roles, which in turn consist of a collection of activities to be performed
by cach role. Thus, the activity-based process models must be analyzed from the perspective of the agents
who will be responsible for enacting selected processes. It is from this analysis that activities or process tasks
are allocated to user roles. This is referred to as “role-based process modeling,” and usually requires an
activity-based process model as a precondition to performing role-based process modeling.

Another significant refinement to the activity-based process model would be specifying how inputs arc trans-
formed to the output of each process task.

The complete process for developing the software for enacting the role-based process model will now be
descnbed. ‘

7.2.1 Process for Developing Kl Shell Process System Applications

The KI Shell can be used to develop an executable Process System. By process system v = mean the “system
of processes” selected, defined, and designed to meet the process requirements of a software development
project or a software development organization. A process system is developed by creating an architecture of
processes to satisfy a project’s requirements and preparing a design to implement the architecture. 1DEFO0 1s
a useful tool for modeling the processes required for a “system of processes” to support a project. Role-
based process modeling is a useful activity for taking a set of processes and organizing them, based on user
activitics, to acquire sufficient detail to record them in a form suitable for enactment and presentation to
process users. ‘Thus, the result of imnlementing a svstem of processes to support the enactment of a
project’s software process, in an executable form, is referred to as an executable process system. We view the
output of the processes codified in a KI Shell application as an cxecutable process system.

The following definitions are useful in discussion below:

1. "AS-1S” process -- a sysiem of processes that currently exist to support the development or production
of some product, e.g., a software system or a computer system.

2. "TO-BE" process -- a destred system of processes needed to support the development or production of
some product.

3. Process domain expert -- domain expert of a particular problem domain as well as the processes gov-
erning that problem domain.

4. Process engineer -- expert in acquiring, representing, developing, and implementing process models and
enactable process systems.

The steps required to implement a K1 Shell application are as follows:

I STEP I
Fatry: Iniate project.

Task: Create an "AS-187 IDEFO model of the current process. This is performed by the Process
Domain Expert.

Vahdation: Team review and aceeptance of the IDEFFO model.

88 STARS Task IS:15 Software Process Tools and Lechniques EBvaluation Report Version 1.0

Exiat: Accurate IDEFO "AS-1S” model.
2. STEP 2

Entry: “AS-IS” process description.

Task:

* Analyze the “"AS-18” process and derive the “TO-BE” and desired process.
¢ Identify different “slices” or increments that could be implemented.

These tasks are to be performed by the Process Domain Exper: in conjunction with the Process
Engineer.

Validation: Team review of the “TO-BE” process.
Exit: Agreement of the potential “TO-BE” process increments that could be automated.

3. STEP 3:
Entry: “TO-BE” process increments.
Task: Perform cost/benefits analysis on potential process increments to be automated.
Validation: Team review of the cost/benefit and sclection of increment to be implemented.
Exit: Agreement on “TO-BE” increment to be implemented.

4. STEP 4:

Entry: All process definition documents related to the method increment are made available to the

process engineer.
Task:

* Present the KI Shell modeling concepts, tradeoffs, and uscr interface to domain experts.

+ Jointly develop an initial method layout. This team task is to be performed by domain experts

and knowledge engineers.
Validation: Initial methods reviewed. Participation of domain experts and process cngineers.
Exit: IFormal adoption of initial method layout.
5. STEP §:
Entry: Detailed specifications provided by domain expert(s).

Task: More detailed process model developed bv process engineers.

Validation: Formal walkthrough to establish common understanding of processes and how they will

be enacted.
Exit: Formal adoption of initial increment to be implemented.
6. STEP 6:
Entry: Detaled process implementation construction plan prepared.
Task: Implement process increment.

Validation: Validate implementation by execution against process test cases, prepared from the
defined process being implemented.

Fxit: Accept increment.

Software Process Enactment Fxperiment and Demonstration Preparation

7.3 CEPA Prototy"s; System Development Implementation Log
Overview

The purpore of this section is to provide an overview of the CEPA Prototype System development. The
compl .+ "CEPA Prototype Systcm Development Implementation Log” will be provided as a supplement to
this report.

7.3.1 March 23 through April 19

Entry:

1. All cleanroom documents made available.

Process:

1. Clanfication of implementation team questions regarding Cleanroom.

[38)

. Layout of initial method in KI Shell modeling notation (FFigure 38 on page 91, Figure 39 on page 92).

3. Presented KI Shell notation to SET and 1BM using Cleanroom Example from the “Cleanroom ling-
neering Software Development Process.”

Validation:
1. Validated methods against the “Cleanroom Lngineering Software Development process.
Exit:

1. Mecthod layout informally reviewed by specification team.

2. Implementation team provided CEPA draft specification for CEEPA prototype system.

7.3.2 April 22 through May 3

Entry:
1. Mcthod layout informally reviewed by specification team.

2. Implementation team provided CEPA draft specification for CEPA prototype system.

Process:
1. Discussion of modeling tradeofls by unplementation team.

2. Implementation tean members discussed development of a process-centered implementation strategy
based on K1 Shell coneepts.

Validation:

I Informal vahdation of implementation approach by demonstrating mitial CEPA coneepts to specification
team.

kit
1. CEPN unplementation approach informally vahdated.

90 STARS Task I8 15 Software Process Tools and Techniques Fyvaluation Report Version 1.0

1605 piv-o * LI

vedury) Suieeyifug put suodey vnjieg
[YLINTEY Y DY R YY)

SONTT] 4O SUOIITIND PeajOTSAN

S04 iueweSwunpy 130foig

LUFELTH ST XV BT

o114 juswdojsaeg eismiog

vou4 uojwredg aismyog |

vodey sninig

Wewesou

dinby/iequieny

s8] 4 Wewnaog 138foiy
ﬁ.l‘.u - Y wavg wwas—

e YI2NGA. S LNTDIINT

BONES| PUT SUCIINEND PANIGNG BUISLXy
"NpeyIg 19efoid ieiseny

wwewdinby

1oquiepy 19¢{oiy

Uy j3efoig

¥Z9UNGR LoArCdd -

r
weweaniipse) la perwideg - h
RS WEUIONA) SIALOY W SSEDY -

frezaral oy U 1aeU0Y

1ypedy 8 Sig UILIUARED S kg poreuig
WOUARPT WUdOeae() S/oaUeq & WY o

lmansa) @y 3y dojeasg

soypayy « mayey
U RSSO 1I8{eig 0 130Dy PUSY -
hzynz azral : Wewoq uojnyes pumisiepun

WAUI0Q 120{01y & 000V Py ¢
lizzna-agrdl : Wewea waqesd punsiepun

snouroeq iseieiy w1
{01753 : siewndoeg jaefoig UITIASH

TAMRL AN RINND] ¢
(11353 : uopisenD jRiepy sAjesey

] PUS PRSI SIS ANE NG NI -
(1T : ensspuonseng [suieny ywang

WerDeQ Uedey ng PY -
[s372) : Lodey smymg svdesg
nuneeq aepog iseisiq @+
13353 : motaey Uy SediNLIg PUS Jog tlo&
N v sweyd do

Jadojanag

j (soansay 10 10 Usperdinng IegL) 13eloig Noduw) - h
TSSO 13084y oy -
r3l & oimig aAIIY PUV 120{0ig Duedeng

ASUIB] Monoy Dojeiy 1] -
(0373l : moprey 120{0id 19nPUOD PUN 10} mundesd

TSRROEE(] SFPN SNMLSS B 1ey -
_l.-.:i.‘..lst

752l wewesou ey a._!.o

oy
Dsjaig Wewdyhy eauen 9] -

AV iue queN U

L] "

g UeERRRY Ledey veng g -
(0773 : podey simg HWANE PUS Mindesy

Wy HRILG 130i0iy ‘WISTISTY OISy mop -
Uagavaag 00 | BotwsoBiumy iasieyy -
UrTal : wnpeoe 10eieig umuen

\ wo oeteug 108aUsi StusweIIW J
JaBsueyy siuawaliou|

(o 4 poatnd w1y 109 g.J
"SRy 150004g 155 I MO Y NOED -
3 UolindwoD aejeuy |Wubig

20OUTI Wonue A 1000 ¥ vy -
1 1eBwunpy sewein sBuwy !

IR 190004y HOWTY QURLS s M1 -
Snapy
WILNIY TV DRI W 1SGuer Ly -
1 12efoug -wo_..:.
" g

hue

PUIETONTY SRINEOSY MRA ¢
ogTIea 99 L Weweduueys 1Dejaiy
t qnPeyoe efoiy MUl dojaaeg

seguen
N S Deltig W N0 TnRUSM Wl tey o
3 secnosey wewdinbg eivaoyy

PR 00601040(] V03000 W 100w ulery -
: seounousy LIE NIy

N\ 0 sojeud JeBsunyy 128f0ud p
Jabeueyy 199]oud

sawesd
uojIeW.o}u|

==

poyisiy
woouues|)

Figure 38. Cleanroom Process Mecthod Layout (Part | of 2).

91

Software Process Enactment Fxperiment and Demonstration Preparation

16w,k UIW

L— STAZ NOIZGNOINT TYNOILIQUY

usq uspian.isueg |
100{oiyg

uejidiIveq tusweisuy
wewdinby

126{04d djj13edg ¥ o} peyIeny siequiey
Bujmoyg sewnly uojisuLojuy ejeBeBly

Jequieyy Jaeoig

spodey 190foid

19enbey sBusyd snpeysg

V Q pol|wQng A]
sodey smieig joejoig

ool luswelsusy

siuswinaog Mejaey §9e{oid
UO|IBINOWNIOg PeAjyIsY
wolinuewnlog Jesn
suojie3jjaedg |wu g
RMYOg souUTULIUEY

sismyog uolinaisig

unpeyag iaefoid |

%) asnodsTE—

siNpeydg§ 108f0id iejsepy
UOIIBI0]|Y e2in0eey
selnU| g mejaey (9e{0ig
SUOHIBAUNWWED |SWIOjU)
siedug Buprop, siuswnaeg
Jsunyd 13efoug

—{?3 .'%) Is——

I

{1393l H
L UBIJ USHIINIISLOD SUIM

N UB[f UORINISUOD AIM

~

h

L ULALINO0Q UTlg UORINISUGT) O} SSTTY h
(s13val : uvlg UOIINIISUSY i =]

Lapg senuonag 109

WOOANOD} WOLAIO AU SAMYOG & 1800V »
(rizva] :suomaiaedg sysm

Lz313°61393] : uswoq UolN(og pUNSIePUN

MUOWNDeQ 14{8ig O 29090y PReY -
1233 0303 yswog Weiqoid pusisiepun

Lo eleid 93 *
los7cal : syuewnseg 13efosgd ULivyy

MR NORIND 19 -
{513c3) : yojisenD [susell) sAjosey

19 PUB SUTIEN NS IUSIIENG HINID

(3% 13 TIN] Vuojleeng |muslY jjugng
awwneg usdey WERG \P3 -

(s323) : uodey sning siudesd
aﬁ!!lci‘tt.!u.

(5732l : muaey U udi3Ling PUB Je) sivderg
@0 *3(0uQ Jejjjaeds -~

Jayoads

S1geg) iodojemeg wully +

o 3nq B Sunl SAIPYRIND OF BuAL PRV -
WO JAL S VORI S MDY 0L HMITTY +
1o iseg uny

s8] 139, uny

)

(™

FRWINN 198301 1900040 S0 -
onq @
WAL « s0im -
i ojmdwoD uonedniued

isdorsasq 4q pornulrs -

J

(2% 75 1 I8} } Aipeg

Vi UORINANIBS BuM AQ perrudg -
80} G $|ALTS 12010 DUT 9187 110 eTeuy -

(633943 : usig uoned e dojeaeg
POV BAMYOS
PUR SAITIO() 126105y 0} SR I0Y DOy -
(123913 01303 : UsWOQ UG|INIOE PuURIBIepun

WO 190(01g 51 1380V DUGY -
{12393 T13v3) : uiBWOQ Weqoig PLEISIepUn

TR Delaig 1] -
(013¢3] : sluewnzog 12efoig uiniuIey

XTI STINORIOND 10T -
(113€3) : uopseNnQ jwuieiuf eajosey

1P OUF OMINN SMILUOAIIND #1VeD)
(Li3'c3) : enssyuopnseng (FWHU] Ywang

SN0 Lodey VNG 1ID] -
#223) : podey snjuig sindaiyg

TP Beney D0 DY

—-udu_ul..:cio.clu_:q;!.i.o_ !-A!t
\ 00 *3104D P L

31489

Figure 39. Cleanroom Process Method Layout (Part 2 of 2).

hniques Evaluation Report Version 1.0

<

92 STARS Task IS-15 Software Process Tools and Te

7.3.3 May 6 through May 24

Entry:
1. CEPA implementation approach informally validated.

Process:
1. Developed initial Construction Plan by implementation team.
2. Identified questions for specification team.

3. Studied CEPA specification, revision 1.
Validation:

1. Informal validation of CEPA implementation approach (i.e. mapping of CEPA specifications to KI
Shell model) based on documentation.

Exit:

1. Review of Construction Plan by specification team.

2. Review of updated CEPA demoustration by specification team.

7.3.4 May 27 through June 12

Entry:
1. Review of Construction Plan by specification team.

2. Review of updated CEPA demonstration by specification team.

Process:
1. Execution of Construction Plan by implementation team.

2. Key features of CEPA prototype system implemented.
Validation:

1. Demonstration reviewed by specification team.
Exit:

1. Review of implementation approach completed.

7.3.5 June 12 through June 21

Entry:
1. Review of Tunstruction Plan by specification team.

2. Review of updated CEPA demonstration by specification team.

Process:
1. Execution of Construction Plan by implementation team.

2. Key features of CEPA prototype system implemented.

Software Process Enactment Experiment and Demonstration Preparation 93

Validation:
1. Demonstration reviewed by spzcification team.
Exit:

1. Review of implementation approach completed.

7.3.6 June 24 through June 28

Entry:

1. Review of implementation approach completed.

Process:

1. Presentation of the KI Shell User Interface implications of the process model to the implementation
team.

2. Developed new CEPA screen regime. (Screens are available in the “Cleanroom Engineering Process
Assistant” specification.) .

3. Completed redesign of KI Shell approach to implementing the CEPA system by exploiting KI Shell
mechanisms.

4. The redesigned approach to implementing the CEPA system was required to take better advantage of
new KI Shell features and to improve the presentations of CEPA to the end-user.

Validation:
1. Review of redesigned method layout with specification team.
Exit:

1. Agreement by both parties on baseline method layout.

7.3.7 July 1 through July 30

Entry:

1. Agreement by both parties on baseline method layout.

Process:

1. Implementation of redesigned CEPA by the implementation team.
Validation:

1. Final CEPA validation testing by the specification team.
Exit:

1. CEPA ready for use to support buoy problem development.

94 STARS Task 1S-15 Software Process Tocls and T'echniques Evaluation Report Version 1.0

7.3.8 CEPA Prototype Development Summary

The CEPA prototype was developed by using the spiral model, where each spiral increment had a set of
goals and objectives and progress was reviewed against those objectives. At the end of each increment, the
construction plan was revicwed against progress, and a plan for the increment was drafted. Increments were
planned as two-week segmenis.

The CEPA prototype development is characterized in Table 2.

Prototype .
Number Stage Goal Duration
Convey to implementation
1 Requirements Capture / team KI Shell application 4 days
Knowledge Engincering development concepts and y
clanfy requircmnents
Demonstrate Cleanroom
process support, while
2 Requirements Capture / clarifying aspects of the 4 weeks
Knowledge Engineering Cleanroom process,
through prototype devel-
opment
Modify requirements engi-
3 Interim Prototype Systems | neering prototypes to 2 weeks
Development conform with the CEPA
specifications
Enhance intenim proto-
.. i) type’s man-machine inter-
4 Final Prototype Systems face to accommodate 5 weeks
Development .
improved role screen
design

Table 2. CEPA Prototype System Development Summary

7.4 Cleanroom Engineering Process Assistant Installation Instructions

In order to install the Cleanroom Engineering Process Assistant prototype system on an IBM Risc
System/6000, you must follow the steps described in this section.

7.4.1 Pre-installation Activities

1. Check on the configuration of the target IBM Risc System/6000 on which CEPA is to be installed.
CEPA requires:

a. AIX 3.1.5 (with the 3005 maintenance and updates apphied)

b. AIXWindows

¢. 16 megabytes of main memory

d. 600 mcgabytes of total disk storage

¢. PTY deviees should be set to 64, using SMIT

f. Number licensed users should be set to 3-32, using SMIT

Software Process Fnactment Experiment and Demonstration Preparation

95

2.

5.

Obtain a copy of the following software:

a. Oracle RDBMS (Version 6 or higher), SQL*NET, and SQL*PLUS" (available from Oracle Corpo-
ration)

b. KI Shell runtime (available from UES, Incorporated)
¢. WordPerfect 5.0 for AIX (available from WordPerfect Corporation)

After the computer hardware configuration has been checked and the necessary software has been
acquired, continue to the next step.

. Create the following file systems from the “root” account:

a. /ujoracle -- 60 to 90 megabytes, depending on Oracle products you wish to install, besides the basic
CEPA application

b. /u/wp50 -- 16 megabytes
¢. /u/kishell -- 86 megabytes
d. /u/cepa -- 16 megabytes.

. Establish the following computer accounts from the “root” account:

a. oracle -- Oracle database product home account
b. wp50 -- WordPerfect 5.0 product home account
c. kishell -- KI Shell and CEPA product home account.

Make sure that the home directory for the above accounts refer to the file systems created. Further,
make sure that these accounts employ the “C” shell (/bin/csh).

In creating these file systems, select the “automatic mount” option.

Mount the file systems that have been created

7.4.2 Install the Oracle RDBMS

An overview of the Oracle installation instructions are provided here. Please refer to your Oracle installation
and planning guide to supplement the below instructions. The following instructions apply to Oracle version
6.0.31.0.1:

1.

Logon onto the “root” account

2. From SMIT, create groups for “dba” and “oracle”

3. From SMIT, assign both the “root” and “oracle” accounts to the “dba” group
4.
5
6

Change directory to /u/oracle ac -- c¢d /u/oracle

. Enter pwd at the AIX prompt to venfy

. Mount the oracle tape and enter:

installp -d /dev/rmtX all
where X 15 the tape drive device number.
After the tape has been installed, reboot the IBM Risc System 6000 by entenng:

shutdown -rF

10 1f method recompilation is required, PRO*C and its libraries must be obtained.

96

STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

10.

11.

12.

13.

14.

15.

16.
17.

18.

Logon onto the root account

. Set the path by entering:

set path = ($path .)

To execute oracle install enter:
.Joracle.install

Make sure oracle home directory is set to /u/oracle

Accept the defaults for the logfile, oracle owner, local bin directory and install manual pages.

After the message “ORACLE BOOT install completed,” reboot the IBM Risc System/6000 by cntcn’ng:'
shutdown -rF

After the reboot has completed, complete the installation instructions specified for “Completing the
installation as ‘oracle.”

After ORACLE has successfully completed, edit the file “/etc/services” and add the following entry:
orasrv 1525/tcp

Note: make sure the number is unique, and must be the same for all networked machines wishing to
use an ORACLE database over the network.

sqldba startup -- to startup the oracle database
tepctl start -- to starts up the oracle SQL process
Request all users to logout
Shutdown ORACLE, by entening the following commands:
sqldba shutdown
tepetl stop
Reboot the IBM Risc System/60060.

7.4.3 Install the KI Shell / CEPA Files

L.

w

Log on to account: kishell

2. Change directory to /u/kishell
3.
4

Issue a pwd command to check on your present working directory

. Insert KI Shell/CEPA tape into the tape drive and enter the following command:

tar -xvf /dev/rmtX -- where X is the tape dnive device number
Copy/append the samples/cshrc.add to .cshre

Edit the .chsrc file and complete the required values. The following is a completed .cshre file:

Software Process Enactment Experiment and Demonstration Preparation 97

7.

8.

Replace the '__ ' appropriately and add to the end

of the user account .cshrc

#

setenv ORACLE HOME oracle # Oracle installation directory
setenv ORACLE_SID CEG # Oracle database instance is
setenv WP_BIN wp50/bin # YWord Perfect bin directory
setenv KI kishell # KI Shell installation directory
setenv KI BIN $KI/bin # KI Shell bin directory

set path = (. $path $WP_BIN $KI_BIN $SORACLE_HOME/bin)
setenv KIDBHOST T:ibmrsl:$ORACLE SID

setenv KISYSDB kishell # FileStore database location
setenv XENVIRONMENT $KI/Defaults/KiShell

setenv WPTERM gui_color

setenv WPTERM50 gui_color

set history=50

set filec=1

Create a subdirectory of /u/kishell called CleanRoom by entering:
mkdir /u/kishell;CleanRoom
Read in the “CleanRoom methods” tape!! by inserting it in the tape dnive, and entering:

tar -xvf /dev/rmtX -- where X is the tape drive device number

7.4.4 Create and Setup the CEPA Account

1.

From the “root” account, create the “cepa” account. Please include the following during the setup of this
account:

a. home directory: ju/cepa

b. shell: /bin/csh

. Read in the diskettes entitled “SNAPSHOT.INITIAL” into the home directory of the “cepa” account by

entering:

tar -xvf jdev;/rfd0 -- where rfd0 is the disk drive

. Make a directory called STATE in the /u/cepa directory by entering:

cd /u/cepa -- to change the directory
pwd -- to check the present working directory
mkdir STATE -- to make the state directory

. From the root account, set all file and directory protections for /u/cepa to 777 by entering:

chmod -R 777 *

. Edit (using vi or another editor) .cshrc and set ORACLE_SID, ORACLE_HOMLE and set the paths to

the ORACLE, WordPerfect and KI-Shell executables.
Edit (using vi or another editor) the following files:

a. RunSmall

b. RunSmallF'S

c. RunPnnt

I If source tape, read in method source code and associated makefiles.

98 STARS Task IS-15 Softwarc Process Tools and Techniques Evaluation Report Version 1.0

d. RunPrintFS

Set KIDBHOST -- example: sctenv KIDBHOST T:ibirs|:3ORACLE _SID

Set DISPLAY -- example:
setenv DISPLAY unix:0 -- for IBM Risc System/6000 Console
setenv DISPLAY xs1:0 -- where the xs! is the hostname of the X-station
setenv DISPLAY falcon:unix:0 -- where falcon is the hostname of the workstation (SUN)

7. Link CleanRoomX and CleanRoomXFS to the appropriate executables by entering:

rm CleanRoomX
In -s <CleanRoom method directory > /CleanRoomX .
rm CleanRoomXFS
In -s <CleanRoom method directory > /CleanRoomXFS .

8. Run the CEPA method using RunSmall, RunSmallFS, RunPrint and RunPrintFS. Project name
{defined by CEPA Administrator) should be set to Buoy_System.

Note: If WordPerfect hangs up delete all WP related processes:
ps -ef | grep wp (gives you process ids)
kill -9 <process id >, <process id > ... (deletes the processes)
9. Copy the .cshrc file in /u/kishell to the /u/cepa directory by entering:
cp /u/kishell/.cshrc /u/cepa/.cshrc

7.4.5 Setup the CEPA FileStore Version

1. Create the following CEPA working accounts:

a. sem -- systems engineering manager

b. stl -- specification tecam leader

c. dtl -- development team leader

d. develop -- developer 1

¢. dev2 -- developer 2

f. ctl -- certification team leader

g. certifi -- certifier 1
Please include the following during the sctup of this account:
a. home directory: /u/cepa

b. shell: /bin/csh

2. After the accounts have been established, send a mail message to cach usend using the UNIX mail
facility by cntering:

mail cepa sem stl dtl develop dev2 ctl certifi <enter >
Subject: CEPA Accounts Established <ecnter >
Account esablished -- message ends. <enter >

CC: <enter>

Software Process Enactment I xperiment and Demonstration Preparation

99

3. At this point the FileStore version of the CEPA method has been installed and may be executed by
logging onto the “cepa” account and entering:

Xinit
RunSmallFS or RunPrintFS. (RunPrintFS is intended for screen printing.)

Note (1): Since the FileStore version is single-user, exit from each user before starting up the CEPA with the
next user.

Note (2): To exit from X-Windows, close all windows in the X scssion. After all windows are closed, press
the left mouse button and select the exit option. After completing this, press ALT-CNTL-BACKSPACE.
This returns the workstation to command line mode.

7.4.6 Setup the CEPA ORACLE Version

1. Create ORACLE users named “kishell” and “CleanRoom” (case not important) by entering the fol-
lowing:

sqlplus system/manager
grant dba to kishell identified by sysmanager; <note semi-colons! >
grai.l iesouice, conaect to cleanroom identified by cleanroom;
comimit;
exit
2. Login onto the “cepa” account and import the ORACLE dump stored in Export/CleanRoom.dmp into
ORACLE by entering:
imp cleanroom/cleanroom
When prompted for the import file name, enter:
Export/CleanRoom.dmp
Select the defaults for all other prompts.
3. Change directories to SysMaint and import the SysMaint database by entering:
cd SysMaint
umport kishell sysmanager

(NOTE the difference between the two imports: The imp is the oracle import; the import is the Kl
Shell import.)

4. The ORACLE version of the CEPA should now be installed. Login as “cepa” and cnter:
xinit

RunSmall (or RunPrint).

100 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

7.4.7 Archiving the CEPA Database

In order to make an archival backup copy of the CEPA database, the following procedure should be per-
formed:

1.
2.

Open the CEPA window.
Change to the main CEPA directory for the CEPA account by entering:
cd /u/cepa
Obtain a dump of the oracle database by entering:
Utils/OraExp
Upon successful completion of step 3, change the directory to Export by entering:

cd Export

. Rename the dated file to a suitable file name by entering:

mv Sep_10 1991.dmp Work_in_progl.dmp
Change the directory to the main CEPA directory by entering:
cd /u/cepa

. Format 4 diskettes, insert a diskette into the drive, and backup all of /u/cepa directory by entering:

tar cvf jdev/rfd0 *

7.4.8 Restoring an Archived CEPA Database

In order to restore an archived CEPA database, the following procedure should performed:

1.
2.
3

6.

10.

Exit from the CEPA system before initiating a restore.

Log onto the “cepa” account.

Change the directory to the home CEPA directory by entering:
cd /u/cepa

. Run the CEPA demonstration account housckeeping utility by entering:

reload.cxe

Enter the SQL*PLUS utility to delete CEPA tables by entering:
sqlplus CleanRoom/CleanRoom

To delete the CEPA tables, enter the following SQL*PLUS COMMAND:
SQIL. > start Utils/deltable.sqp

. To exit from SQL*PLUS enter:

SQI. > cxit

Restore files from tar formatted disks by entering:
tar -xvf ‘dev/rfd0

Import the restored CEPA data by entening:
tar -xvf ‘dev:rfd0

Import the restored CEPA data by entenng:

Software Process Enactment bxperiment and Demonstration Preparation

10t

imp CleanRoom/CleanRoom

11. You will be prompted to provide a filename for file import; Enter “Export/Yourkile.dmp” at the
prompt:

Import file: expdat.dmp > Export/YourFile.dmp
where YourFile.dmp is the name of the CEPA database dump file to be restored.

At the completion of the CEPA database restore, the message “Import terminated successfully” will be dis-
played. Your CEPA database has been restored.

7.5 CEPA Demonstration Operation Instructions and Script

7.5.1 CEPA Operation Instructions

To run CEPA, open an X-Window session by using the “xinit” command. Within the X-Window, log onto
the appropriate cleanroom role by invoking “RunSmall.” Instructions for imtializing, archiving, and restoring
the CEPA database are discussed in an earlier section. .

7.5.2 CEPA Demonstration Script

It is desirable to use the CEPA prototype by showing it to software engineers and other people interested in
learning about and studying software development process. Through interactions with these people, one can
learn about the usefulness of software engineering environments.

The CEPA prototype is an engineering model of the integrating component of a Software Engincering Envi-
ronment (SEE) that supports Cleanroom processes and engineering practices. The Cleanroom processes and
engineering practices are built on a firm science base.

The purpose of the CEPA model is to:

1. Determine the feasibility of developing a uscful SEE,

2. Develop requircments for a production-level product, and

3. Learn how to build and use such a product.
We know as a result of building a prototype CEPA, that a robust product version of CEPA can be devel-
oped. What we do not know is whether a CEPA is useful to practicing software engineers nor do we have
real-world experience to develop requirements for a production-level CEPA. The first step in obtaining this

information is to begin to demonstrate CEPA to interested people and obtain their reaction. CEPA demon-
strations should be as open-ended as possible.

We believe that the CEPA model is the most advanced work yet done in the process world, cither in the

university or the research community. Therefore, we all have a great deal to learn by showing CEPA to
people and soliciting their reactions.

102 STARS lask 1$-15 Software Process Fools and 1echniques Lvaluation Report Version 1.0

7.5.3 CEPA Demonstration Script

The situation being demonstrated is three engineers (one development team leader and two developers) using
three different workstations simultaneously in simulated time. But since there 1s only onc person giving the
demonstration (the demonstration manager) and one audicnce, the demonstration manager must move back
and forth between roles at will to show the audience what i1s going on with cach person. As a result, the
script must leave a good deal to the discretion of the demonstration manager. Ile/she must be able to move
back and forth between simulated roles as desired or as prompted by questions.

Preconditions:

1. Setup roles.
2. Setup state data with problem in some stage of completion with several boxes complete.

3. Adapt screen ready to go.
Demonstration situation:
1. One work station that will support 3 users. All screens for the three people are on one workstation

screen so a person conducting the demonstration can transfer between roles asynchronously.

2. The duration for the demonstration will be between 15 and 30 minutes. That will be about the limit of
the attention span during an cxhibition. As one will sce from looking at the demonstration script,
extending it for longer periods of time will be easy.

Events for Developer One:

1. Works on design object. This assumes the actual editing of files in WordPerfect. Since working on any
design object leads to a number of windows” being visible on the screen, the developer will work through
some of them by designing a black box, a state box, or a clear box or refining or reorganizing a clear
box.

Responds to mail from others.

Sends mail to schedule team review.
Holds team review.

Team review does not pass.

Does more work on the design object.
Submits a question.

Holds team review for the design object.

W ® N kW N

Team review passes.
10. Requests for team leader to circulate completion conditions.

11. Completion conditions are circulated and eventually signed off on. While this 1s occurning. the developer
can go on to next task, which is a design object sclected from the CEPA main menu.

12. Adds a note in Engineer’s Notebook.

13. Looks at the Engincening Handbook to understand how to work on the subsequent design object.
14. Works on design object.

15. 1 ooks at answer to question submutted carlier.

16. Calls up some state data to be viewed, to help create the design object.

Software Process Fnactment {xperiment and Demonstration Preparation 103

17. Continues to work on design object.

18. Sends mail to schedule teamn review.

19. Holds team review.

20. Team review passes.

21. Requests for team leader to circulate completion conditions.

22. Completion conditions are circulated and eventually signed off on. While this is occurning the developer
goes on to next task which is a design object sclected from the CEPA main screen.

Events for Developer Two:

1. Works on design object. This assumes the actual editing of files in WordPerfect. Since working on any
design object leads to a number of windows’ being visible on the screen, the developer will work through
some of them by designing a black box, a state box, or a clear box or refining or reorganizing a clear
box.

Responds to mail from otbers.

Sends mail to schedule team review.

Holds team review.

Team review does not pass.

Does more work on the design object.

Resolves question when it arrives from developer one.
Holds team review for the design object.

Team review passes.

S v ® N » e BN

Requests for team lcader to circulate completion conditions.

—
[a—

. Completion conditions are circulated and eventually signed off on. While this i1s occurning, the developer
can go on to the next task, which is a design object selected from the CEPA main menu.

12. Adds a note in Engincer’s Notebook.

13. Looks at Engincering Handbook to understand how to work on the subscquent design object.

14. Works on design object.

15. Calls up some state data to be viewed, to help create the design object.

16. Continues to work on design object.

17. Sends mail to schedule team review.

18. Holds tcam revicw.

19. Team review passes.

20. Requests for team leader to circulate completion condiions.

21. Completion conditions are circulated and eventually signed off on. While this s occurring. the developer
goes on to next task, which s a design object selected from the CEFPA mam menu.

Events for Developer Team Leader:

1. Assigns tasks.

104 STARS lask 1815 Software Process Tools and Technigues | valuation Report Version 1.0

2. Works on design object. 'This assumes the actual editing of files in WordPerfect. Since working on any
design object leads to a number of windows’ being visible on the screen, the developer will work through
some of them by designing a black box, a state box, or a clear box or refining or reorganizing a clear
box.

. Sends mail to schedule a tcam review.
. Holds team review.

. Team review does not pass.

. Does more work on the design object.
. Responds to mail from others.

. Looks at metncs.

. Does more work on the design object.

S O e 3 v b W

—

. Circulates completion conditions.

—
—

. Team review passes.

[2¥]

. Requests for tcam leader to circulate completion conditions.

. Completion conditions are circulated and eventually signed off on. While this is occurring the developer
can go on to next task, which is a design object selected from the CEPA main menu.

—
[9%]

14. 1.ooks at metncs.

15. Adds a note in Engineer’s Notebook.

16. 1.ooks at Engineering Handbook to understand how to work on the subsequent design object.
17. Works on design object.

18. Calls up some state data to be viewed, to help create the design object.

19. Continues to work on design object.

20. Sends mail to schedule team review.

21. Holds team review.

22. Team review passes.

23. Requests for team leader to circulate completion conditions.

24, Completion conditions are circulated and eventually signed off on. While this is occurning, the developer
goes oa to next task which is a design object selected from the CEPA main menu and proceeds to work
on it. This assumes that the editing of files during the demonstration will be performed in WordPerfect.
Since working on any design object eads 1o a number of windows” being visible on the screen. the devel-
oper should work through some of them.

Exceuting Demonstration:

All work 1s performed mn the demonstration by pressing the appropriate CEPA buttons on screens and using
the simulated Cleanroom tools built in Word Perfect.

7.6 Description of all CEPA Software Source Deliverables

Software Process Fnactment t xperiment and Demonstration Preparation 105

7.6.1.1 CEPA Multi-User Source Code Files

The following files are necessary for prepaning the QRACLE version of CEPA, which permits multi-user
access to CEPA:

1.

© ® N AR W

..
<

1.

12.
13.
14.
15.

16.

17.
18.

19.

20.
21.

ProjectManager.c - Rules for the CEPA Administrator
SEM.c - Rules for the Software Engineering Manager

. STL.c - Rules for the Specification Team Lender
Specifier.c - Rules for the Specification Team Member
DTL.c - Rules for the Development Team lcader
Developer.c - Rules for the Development Teamn Member
CTL.c - Rules for the Certification Team Leader
Certifter.c - Rules for the Certification Team Member
question.c - Rules to handle questions and issues

tasks.c - Code to handle the general Cleanroom tasks, e.g., Cleanroom Engineering Process handbook,
engineering notebook, mail, view state data, refresh and logoff '

Application.c - Invoking and terminating external applications integrated into the KI Shell environment,
such as WordPerfect.

CRrolegraph.c - Graphical Cleanroom Display Manager (Adapt)
CRkimetrics.c - Process metrics capture and reporting code
CRKey.c - Code used to generate unique identification keys for objects

Information.c - Rules attached to the information objects required for Cleanroom process implementa-
tion

Utilities.c - General purpose utilities written for the Cleanroom process implementation, e.g. circulation
completion conditions, state data management, etc.

WorkAllocation.c - General pu-pose utilities to pre-allocate Cleanroom tasks.

attofid.sc - PRO*C routines for querying KI Shell objects based on their attributes. Call based on a
single attribute.

attofidN.sc - PRO*C routines for querying KI Shell objects bascd on their attributes. Call based on use
of multiple attributes.

kiuserX.c - I'ile generated by the KI Shell method development environment.

dummyX.c - File for placing function call “code stubs” dunng software system development.

7.6.1.2 CEPA Single-User File Store Version Files

The followir - files are necessary for preparing a file store version of CEPA:

1.

[

attofid NS¢ - Selects frame instances with certain attributes for the filestore version.
attofidbS.c - Selecis frame instances with certain attributes for the filestore version.

. CRKevFS ¢ - Generates new identification keys for the filestore version

106 STARS Task IS-15 Software Process Tools and Techniques T valuation Report Version 1.0
{ I

7.6.1.3 CEPA Make Files
The make file for building the ORACLE version of CEPA is:
Xmake
The command to execute make file for the ORACLE version of CEPA is:
make -f Xmake CleanRoomX
The make file for building the file store version of CEPA 1s:
Xmake
The command to execute the make file for the file store version of CEPA is:
make -f Xmake CleanRoomXFS
7.6.1.4 CEPA WordPerfect Files
Below are the list of files that appear on this diskette. These represent most of the files that are on the
RISC/6000. The names are different on tue RISC/6000 because of the fact that DOS only allows 8 char-
acter names with 3 character extensions. The files are organized intc 3 main directories: init, broad and
sensor. Each of these represent a different increment (thus a different module). The purpose of each type of

file inside each directory are the same; only the information inside each one is different. Descriptions of each
of the files follow:

1. VERSION.wp - contains the specifications for the entire buoy system.

The following files are in each directory:

—

STEP1_FL.WP - contains stimuli and responses of the module.

. BLACKBOX.WP - contains the black box of the module.

STEP3_FLWP - contains the black box validation of the module.

STEP4_FIL.WP - lists the stimuli histories used in the black box.

STEPS_FIL.WP - documents the decisions for state data distribution in the module.
STATEBOX.WP - contains the state box of the module.

STEP7_FLWP - lists the usage of state data in the state box.

STEP8_FIL.WP - contains the state box venfication of the module.

I S I RS R SR

STEPY9_FLWP - documents the more concrete data types for state data of the module.

. CLEARBOX.WP - contains the clear box of the module.

—
py
=

1. STEPL]_F.W¢ - contains the clear box venfication of the module.

The following files appear only in the init directory, but will be created in the other directonies as develop-
ment and certification progresses:

1. TESTPLANJP - presents the test plan for the increment.
2. MARKOVMO.WP - presents the modified Markov model for the increment.

3. TESTSCRLWP - presents the test scripts for the increment.

Software Process Fnactment I xperiment and Demonstration Preparation 107

4. TESTSCEN.WP - presents the test scenarios for the increment.

5. EXPOUT.WP - presents the expected output of the test scenarios for the increment.
6. REFINEME.WP - presents a refinement of a clear box.

7. VERIFICA WP - presents a verification of a refinement of a clear box.

7.7 Major Lessons Learned from CEPA Implementation

Cleanroom has well-defined activities and is rich in its synchronization and ordering requirements. It has
several cases of dynamic work allocation and a complex information structure. Thus, Cleanroom is a suit-
able process to be supported by a KI Shell assistant, such as the CEPA prototype system.

To fully exploit KI Shell’s enactment features at the lowest implementation cost possible, it is important to
make precise, issues related to both the roles involved in developing a process system, such as CEPA and the
K1 Shell features necessary to support its development. It is critical that the following project goals be
clearly understood by all process system development teams:

¢ Goal 1: Support the users of the process in the best way possible.

» Goal 2: Fully exploit the process enactment “shell’s” capability to support the domain.

This requires good communication among the three roles involved in process system development, in the
basis of an understanding of the teamn members’ roles and responsibilities.

7.7.1 Process Implementation Roles

There are three types of roles involved in implementing a system to support the enactment of a process:

1. Process Domain Expert, who understands how the process is to be defined and presented to the users of
the system.

2. Process Knowledge Engincer, who understands how the process enactment tool can be fully exploited to
achieve the objectives of the process domain.

3. Process Implementer, who implements the process according to the specifications of the Process Know-
ledge Engineer that are presented in terms of the KI Shell notation.

7.7.2 Key Problem and Solution

In the task IS-15, the specification team’s role was the Process Domain Expert, and the implementation
team’s role was that of Process Knowledge Engincer and Process Implementer. The specification tcam pro-
vided detailed CEPA specifications that described a concept for supporting Cleanroom. During the know-
ledge engineering and prototyping process, the interpretations of these specifications were those of the
specification wnters. To exploit the KI Shell’s mechanisms for implementing CEPA, it was necessary to
convey knowledge about the workings of the KI Shell to the specification team, so that the specifications
could be presented to the implementation team in terms with which it was familiar. Thus specifications for a
process system such as the “Cleanroom Engineering Process Assistant” would be easier for developers to
interpret by specifving processing through the use of the KI Shell conceptual model. Therefore, the specifi-
cation team and the implementation team require knowledge of the KI Shell conceptual model to effectively
plan and design executable process systems.

Durning the initial process of planning the tmplementation of CEEPA prototype, there was little communi-

cation between the specification team and the inplementation team. This caused a situation where the
implementation teamn had to abstract knowledge from the specifications based on one conceptual model to a

108 STARS Task IS-135 Software Process Tools and {echniques Lvaluation Report Version 1.0

conceptual model with which the implementers were familiar. Although the box structure notation was
excellent for conveying functional requirements, there was much room for extrapolating what the specifica-
tions meant with regard to man-machine interface and display regimes. For example, the CEPA specifica-
tion called for the following:

1. If there were no tasks of a certain type for a user (such as develop state box), that task option should be
disabled

2. If there were tasks, the user should be alerted in some manner. (the user should not have to issue a
command to find out if there are any pending tasks).

The standard KI Shell menu system did not include the functionality to support these requircments.
Further, the implementation team also had to interpret navigation logic implied in the CEPA specification.

It would have been useful for the specification team’s domain experts to have understood, in a more precise
way, the KI Shell’s presentation and user interface implications of the underlying process model.

Most of the above problems were remedied through an intensive two-day team communication session
where the specification team was given better knowledge of the KI Shell conceptual model and the imple-
mentation team was able to explore beyond their traditional methods for implementing process system appli-
cations by incorporating new techniques. The major lesson learned here is that to develop specifications for
complex process systems such as the Cleanroom Engineering Software Development Process, either one of
two models must be employed:

1. Knowledge acquisition through the interviewing of domain experts, the incremental representation and
validation of process knowledge, and the incremental implementation of the process system

(Using this method, both domain expert and knowledge engineer build conceptual models of the domain
and the application of the tools being employed. Where there is no shared model for how knowledge is
to be represented and employed, this is the only practical model to select.)

2. Knowledge acquisition through the analysis of prepared materials and specifications, incremental repre-
sentation and validation of process knowledge with best available personnel or domain experts, if avail-
able, and the incremental implementation of the process system.

(Using this model, it is vitally important that the specification team have knowledge of the conceptual
model of the implementation technology that is to be employed. If specifier and implementer share the
same understanding of knowledge representation and implementation models, the functional specifica-
tions and man-machine concepts have a better chance of being understood by the implementers.
Further, it is important for the specification team and the implementation team to have access to one
another, both during the specification preparation process and during the specification analysis and
design process, to help interpret the specifications.)

7.7.3 KI Shell’s Suitability for Cleanroom

For the practices of an enterprise to be suited for support using a K1 Shell-based assistant, the processes that
underlie these practices must:

1. Be well-defined, i.e., consisting of well-defined activities;

2. Have some precedence in the order m which they must be executed or require some synchronization
among them;

3. Do some degree of dynamic work-allocation (1.e., based on the results of some previous activity, create
work for some user); and

4. Require the modeling and viewing of structured information.

The processes underlying the Cleanroom methodology do meet the above requirements. and henee are suit-
able for representation using the KT Shell. For example, the activities in Cleanroom consist mainly of:

Software Process Inactment Experiment and Demonstration Preparation 109

¢ Define User

* Define Project

* Circulate Completion Lists

» Sign Completion Conditions

* Receive Completion Conditions

* Allocate Personnel

* Allocate Teams

* Develop Black, State, or Clear Box or Refine a Clear Box
* Run Test Cases.

All these activities are well defined, and as such were suitable for implementation (that is, they can be imple-
mented algorithmically).

Cleanroom activities must be done in a certain order. For example, most certification activities (such as the
running of test cases) must be done only after development of an increment is complete. There are several
examples of such ordering requirements in the Cleanroom methodology.

Work allocation is a primary activity within Cleanroom. For example, Certifiers create failure reports, which
then become pieces of work to be done by the Developers, who then have to correct the code appropriately.

The information to be processed in Cleanroom has a complex structure. While black, state, and clear boxes
are just treated as text files, they must be grouped within modules, within projects, and so on.

Cleanroom is a suitable application to be supported by the KI Shell, as it (1) has well-defined activities, (2)

is rich in its synchronization and ordering requirements, and (3) has several cases of dynamic work-allocation
and a complex information structure.

110 STARS Task 15-15 Software Process Tools and Techniques L.valuation Report Version 1.0

8.0 STARS IS-15 Software Representation Work

On the basis of the Software Process Management System (SPMS) prototype work performed under STARS
Task IR-23/B, IBM decided to redirect work from performing software process modeling experiments using
SPMS to examining process management architecture issues for the IBM STARS SEE and to examine how
the Software Process Management System prototype could be migrated to the IBM STARS SEE. Consider-
able process modeling has been performed in SPMS, including the process asset capture of the IEEE P10-74
software life-cvcle process components. Codifying these process assets provided the basis for experimenting
with instantiating process architectures through a reuse library of process assets.

8.1 Software Process Modeling Support

This section describes an example of a system intended to provide support for the modeling of software
processes, namely the Software Process Management System (SPMS). We shall provide an overview of
SPMS, the SPMS concept of process modeling, and give a description of the features of SPMS including its
software process simulation capubilities. We shall first assess the requirements for the port of SPMS to the
IBM RISC System/6000, then discuss of the training materials developed, and finally consider the
hardware/software requirements of SPMS.

8.1.1 Software Process Management System: Overview

The prototype SPMS supports exploration and experimentation concerning some of the issues introduced in
section 2, such as defining software processes, software process enactment, process improvement and product
metrics. We believe that it will facilitate communication of a formalized process across an organization or
project. It will also support some degree of process reuse by allowing selection of a process model from a
base set of alternatives. It will also support process evolution and adaptation owing to its ability to define
model-based product and process measurements, and to collect and reason about data relative to the process
model.

The prototype SPMS meets some of the system requirements for enactment described in section 2.2.3.3.
SPMS supports to some degree most of the process model concepts needed for cnaction including products,
activities, agents, control flow, communication, decisions, long-term execution, concurrency and commuri-
cation, vicws, and to some degree roles, extensibility, reuse, process change, and the testing and debugging of
process enactments. The prototype SPMS does not support all of these aspects to the degree necessary to
meet the requirecments found in section 2.2.3.3. It has, however, allowed experimentation and refinement of
requirements as well as the development of techniques that we believe can be utilized to fulfill these require-
ments.

The SPMS concept of software process management takes an activity-based view to modeling process that is

related to key concepts of project planning. Figure 40 on page 112 Wlustrates the SPMS software process
management concept.

STARS IS-15 Software Representation Wark 111

Process Model = How

Project Data = What

Plan = How + What

Resources = Who

Durations + Scheduling = When

Scheduled Plan with Resources = Who, What, When, How

This Plan + monitoring methods + enaction =

Software Process Management

Figure 40. What Is Software Process Management?

8.1.1.1 SPMS Architecture

A high-level view of the SPMS system architecture is shown in Figure 41 on page 113. This figure illus-
trates SPMS as an element of the software development project software engineering environment along with
directly related project disciplines. SPMS can be viewed as a tool for interfacing among all project disci-
plines and corporate overhead functions, by including these organizational interfaces in the process models
developed and tailored for a project.

112 STARS Task IS-15 Software Process Tools and Techniques Evaluation Repor. ersion 1.0
e |

Project Environment

Process
Coordination SDE
Project Configuration
Management Management
Risk V&V
Management System
Quality Reuse
Measurement System

Object

HyperCard | i

Software Process
Management System

Nexpert >

Nexpert
Object

KB J

SPMS
Oracle

Data Base

Figure 41. High-Level Architecture of SPMS.

The intendcd uscrs of SPMS are project managers, process engineers, and software engineers. SPMS pro-

vides a means of collaboration among these users in a software development project. The determination of
which componcnts of the SEE should directly interact with SPMS was based upon the SPMS concept for
modeling processes and model- and project-specific tailoring. The internal architecture of the SPMS proto-
type that was developee on IR-23/B is illustrated in Figure 42 on page 114. The specific COTS tools being
used in the SPMS prototype are described in section 8.2 of this document.

The system architecture for SPMS is comprises of the following system components:

1. A Control Integration Mechanism

STARS IS-15 Software Representation Work

113

[COND___HYPOTHESIS__ |
Project
ACTIONS ____ = Executable Mode! Management
Data Base System
ORACLE M
NEXPERT OBJECI
. J
+ Knowledge-Based « Historical Data
Conceptual Model + Process Components
« Monitoring Methods « Process Models
and Rules
7
MQ?P 1 1 ,_~

+ Component Entry and Reports

Editing
+ Component Selection P

and Model Definition Components e
» Execution Constraint —_—

Selection —_————
» Metric Selection —_—
+ Simulation Interface L HYPERCARL J/ —=

Figure 42. The System Architecture for SPMS.

HyperCard provides control integration services for integrating the commercial-off-the-shelf tools for
SPMS. The HyperCard interface is directly connected to the database for the purposes of entering,
browsing, and selecting the components, constraints, or metrics for building a process model. The
HyperCard also serves as the interface for the system when it 1s used for simulation.

2. Classification Knowledge Modeling Tool and Mecthod Monitoring and Execution

The expert system shell (NEXPERT Object) contains the knowledge-based representation of the process
model and the instantiated project-specific model. It also contains the methods used for monitoring the

executing process.

3. Persistant Knowledge Store

114 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

The ORACLE relational database contains the process components library, the process models that
have been constructed, the project-specific model, and histoncal data. QRACLE's role is also that of a
persistent data storage mechanism to support process enactment simulation, by maintaining process state
and history.

The arrows to and from the NEXPERT Object expert system shell represent bridges between the shell
and the other COTS tools that we have used in SPMS. These bridges allow the expert system shell to
be embedded into SPMS within the Project Environment Base prototype (software engincering environ-
ment). The shell may call out to proced +! languages such as C or call out to the relational database,
using SQL to retricve from or update the database. The bridge to HyperCard allows SPMS to directly
interact with the NEXPERT Object expert system shell.

NEXPERT Object provides a rich classification knowledge modeling tool, and supports object-oriented
systemns development that provides full multiple inheritance. By using the NEXPERT Object product in
conjunction with the ORACLE product, we have not only many of the advantages of an object-oriented
database but also a more mature and widely available technology.

4. Project Activity Network Modeling Tool

The MicroPlanner Xpert provides functionality common to many project management systems, such as
Pert and Gantt charts. Further, MicroPlanner Xpert is employed to perform nrocess task or activity
modeling. The activity networks are exported for use by SPMS for developing the “project/process” plan
-- the combining of process activities with the details necessary to develop effective process models. The
“project/process plan” concept is illustrated in Figure 43 on page 116.

8.1.1.2 SPMS Process Modeling Concepts

Process models and their representations must be viewed at several levels of granularity. Among these are
the entire model, named groups of tasks and their relationships, and the individual tasks themselves. To
further complicate the issue, each of these levels of granularity may be mapped to different levels of concep-
tual abstraction, depending upon the process to be modeled, the state of knowledge concerning the various
tasks within it, and the need to specify different tasks at different granulanties.

SPMS is designed to be independent of the particular level of conceptual abstraction and allows the user to
specify process fragments or nodes within named groups of related process fragments and to relate these
named groups or process components into a larger model. The named process components may optionally
be deleted from the larger collection or library of components if desired. For example, some of the named
components might for represent different techniques for producing the same products. Each of the tech-
niques contained in a named process component is related to those process fragments or nodes within other
named components that require their products as inputs. If some of these techniques were not ever of
interest, then the user might delete these from the process component library or model by using the model
editor of SPMS. Other techniques might be of interest and left in the model, but the user might not wish to
specify exactly which technique was to be used on a particular product until project-specific information was
known. Parameters associated with the various techniques allows a late binding of project-specific data to
the more general model.

8.1.2 Software Process Management: Concept of Operation

Any software process management capability should support the defimtion, design, and continual develop-
ment of software processes. It 1s these models that will be used as “templates” for further claborated proc-
esses for a specific project. SPMS provides the facilitics for developing and desenbing these generic models
and mnstantiating them for a particular project. The instantiation includes time and resource scheduling.
SPMS also provides the mechantsm for simulating these processes and replanning based on input from the
user.

STARS IS-15 Software Representation Work 1 15

Process Model Project Data
Prototypical Specific
Tasks, Metrics,
MileStones, Quality Goals,
Products, Products to be built
Constraints,
and Data Collection Forms

Create Plan

A specific constrained sequence of named
Tasks,

MileStones,

Products,

Monitoring methods,

and tables to hold collected metric information.

Figure 43. Project,Process Plan Concept. Process Model + Project Data = "Project/Process Plan.”

Figure 45 on page 119 shows a high-level view of the operation of SPMS. Starting at the far-left side of
Figure 45 (point 1), process and product components and constraints are created to form the basic building
blocks of the process model. These user actions are perfformed within the project management system,
MicroPlanner Xpert (Xpert), which results in a graphical representation of the process model. Activities (or
process tasks) are modeled in Xpert by using an Entry / Task / Validation / Exit (ETVX) style. The form
for an example SPMS process model component ts illustrated in Figure 44 on page 117.

The metrics to be collected and the data collection forms to be used in collecting this data have been imple-
mented in the prototype SPMS from the "RADC Quality Framework (Technical Report (Interim) Volume

1V Software Quality Framework,” <40 > (point 2) and are contained within a metrics database. This data-
base and the associated RADC documents provide the information necessary to select data collection forms

116 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

\'}
N
s 7 N N
7 N
7 7 N~
7 ~
P ‘ 1002 I ~ .
Pl | Aparallel N
0,0 task T N
A product

1000 | 1001 | (1004 |
First task cond task A milestone

0.0 0.0

1003 I

—1 A parallel |
0,0 task

Figure 44. A Process Model Component.

(DCFs) to be associated with validation tasks within the process model. (See point 3.) A node may also be
specified in the process model as a starting point for potential rework should the measures taken by the
validation task fail to meet desired quality goals.

The process model is then exported as an ASCII file from the project management system. (See point 4.)
The process engineer (PE) may exit the project management system.

The PE logs into SPMS and, from the process interface, imports the ASCII representation of the process
model into SPMS. This constrained and instrumented process model may be used as the basis for creating
project-specific plans (see point 7) or used as a reusable library of tailorable process components. Tailonng
may occur at two levels of granulanty:

« The individual process, product, and constraint components (see point 5)

« The model level (see point 6).

The edited model may then be used to create plans.

STARS IS-15 Software Representation Work 117

Within the Project Interface, a project can be created (sce point 7) within SPMS. A project represents the
combination of quality measures and software components to be constructed by the software development
process. The quality measures and their associated quality goals are selected at point 8. The software parts
are also associated with this project at point 8. When the project has been constructed, a plan may be
created (see point 9). Creating a plan combines the process model information with the project information
to produce the instantiated plan, knowledge bases, metric calculation methods, and tables necessary for the
execution of the plan. (The plan cannot be executed before to scheduling by the project management
system.)

The PE may tailor the plan by editing the quality goals for specific products within the software develop-
ment process. The quahty goals selected at point 8 provide default values for a selected software quality
factor for all instances of products measured by that factor. The tatloring of these values at point 10 allows
the setting of higher- or lower-quality goals for specific products within the plan.

The plan may have specific graphical displays associated with 1t. (See point 11.) The sclected graphs will be
displayed and dynamically updated during the simulated execution of the plan. The database is kept updated
by the expert system during exccution, and the graphical displays are updated once for each increment of the
simulation clock. Before simulated execution, the plan must be exported to the project management system
for scheduling. An ASCII file is exported from SPMS in the format required by the project management
system, Xpert. (See point 12.)

118 STARS Task IS-15 Softnare Process Tools and Technigues Fraluation Report Version 1.0

Matrics Definition Function

[€)

Jaline Metric Process Refinement Function
Formulas
Metric DataBase Edit
Define Data .] Constraints

Coltection Forms

é&n Process

Define Constraints

\JEI0 2% 20 IR I
OOUOOLN

Rasource Allocation & Scheduling Project I:s::;::::i:: Function

Figure 45. A High-Level View of Operation of SPMS.

This unscheduled plan is imported into the project management system (Xpert), where the appropnate dura-
tion estimates for each task must be entered, the desired resources must be associated, and the desired plan
must be scheduled. When these actions have been performed, the scheduled plan is exported from the
project management system (Xpert) as an ASCII file (scc point 14).

STARS IS-15 Software Representation Work 119

The scheduled plan must be imported into SPMS through the Project Interface. At this point, execution of
this plan may be simulated. (Sce point 15.) The metric monitonng methods within the expert system will
request that the necessary data collection forms (IDCFs) be completed as they are needed within the exe-
cuting plan. In the simulation, the values of the DCF questions will be randomly computed. The moni-
toring methods will then compare the computed values of the metrics (which are based on the answers to the
DCF questions) with the quality goals for the quality factor for the specific product being tested. If these
values are within the range of the desired goals, then execution of the task sequences that follow the vali-
dation task in the plan will continue, otherwise they cannot continue, and failure notification 1s issued.

If desired, those portions of the network that the process model has specified as necessary to alleviate the
failure of the validation task may be automatically created. This represents the “rework” needed to bring the
product that has failed the validation task up to the level of the quality threshold. (Sce point 16.) This
replanning is based upon a rework path that was specified within the process model. The impacts of new
product versions that may result from rework are also propagated through the network.

As a result of replanning, it is necessary to reschedule the network of tasks. This requires moving through
points 12, 13, and 14 before continuing with the execution of the plan.

8.1.2.1 Software Process Management System: Process Modeling Concept

Because the prototype SPMS utilizes genenic process models to produce project-specific process models
(plans), it is important to clearly distinguish between the two kinds of process models. A process model does
not represent any specific software component or system; it is the sequence of tasks, milestones, constraints,
and products necessary to produce a prototypical single instance of each of the types of software components
that are represeuted within the model. This is in contrast to an instantiated project-specific process model,
which usually contains numerous specitic named and interrelated instances of the software components to be
produced by a software development process. This is usually called a plan.

A plan may have resources, durations, scheduled start and finish dates, cost information, and work break-
down structures associated with the named tasks and products within the plan. Process models normally
lack this detailed elaboration but contain information concerning the development mode of the tasks, the
architectural level of the products that the tasks produce, the data collection requirements of the metrics
assoctated with particular tasks, and starting points for potential rework within the model.

Process models are used to provide the framework for producing plans that may be rephcated. Process
models may be viewed as a collection of process components or process model fragments. The process
model contains these components or fragments and their relationships. Some writers refer to the compo-
nents as the process model and the view which includes the relationships between these components as
process architecture. It is important to differentiate between non-specific process m~ {els which represent
prototypical instances of tasks and products, and mstantiated ones which represent an actual software devel-
opment process.

A plan is the baseline for monitoring progress of a spectfic software development project. The tasks, mile-

stones, and products within both process models and plans are represented within an activity or node

network in SPMS. This network 1s entered 1into the system via traditional project management technigues.

The node types sed to support process modeling, that are currently supported in the prototype SPMS are:
* Task:

The basic component of an activity or node process model. It sigmfies that something is going to
happen.

¢ Milcstone:

A milestone 1s a special node used to highlight important events in i proce s model.

120 STARS Task 18-15 Software Process Tools and Technigues Eaaluation Report Version 1.0
q P

* Interface:

An interface node is a special node used to provide a logical link between two or more named groups of
process components. An interface node is used to represent a product in SPMS.

« Reverse (Or):

A reverse node is a special node that allows a task to start as soon as any of its predecessors is complete
as opposed to the normal logic in which an operation may only start when all of its predecessors are
complete. It represents an OR condition rather than the usual AND condition in SPMS.

These symbols are illustrated in Figure 46 on page 122.

STARS IS-15 Software Rearesentation Work 121

e Task:

The basic component of a process model.

e Milestone:

A special node used to highlight important
events in a process model.

¢ Interface:

A special node used to link subnetworks
@ in the process model. Represents a
product in the SPMS.

e Reverse: (OR)

A special node used which allows the

> successor to start when any predecessor is
complete rather than when allpredecessors
are complete.

Figure 46. Process Activity Modeling Symbols.

These nodes niay be linked into an activity network by the following constraint types:
* Finish to Start:

A Finish to Start link is the most common link. It specifies that a task cannot start until its predecessor
15 completed.

* Finish to Finish:

122 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

A Finish to Finish link signifies that the completion of a task 1s in part determined by the completion of
its successor task.

« Start to Finish:
A Start to Finish link specifies that a task cannot finish until its predecessor starts.
+ Start to Start:
A Start to Start link specifies that two tasks may start together.
« Hammock:
A Hammock link calculates it own duration as the elapsed time between its start node and its ending

node. Hammocks may have resources and are used to summarize parts of a process model network.

These symbols are illustrated in Figure 47 on page 124.

STARS 1S-13 Software Representation Work 123

Links

From

Finish-Start: When
llFromll Finishes, IIToll
Starts.

Finish-Start

_

Finish-Finish

Finish-Finish: When
"From" Finishes, “To"
Finishes.

Start-Start

Start-Start: When
"From" Starts, "To"
Starts.

i

Start-Finish

Start-Finish: When
“From" Starts, "To"
Finishes.

0
1000

C

mmock

Hammock: Measures

the duration of the
() () l critical path between
() é) its nodes

Figure 47. Process Activity Links.

Interface nodes are used to represent products in SPMS. Hammock links connect nodes that represent the
starting point and finishing point of some development phase. The duration of this link is the sum of dura-
tions of all links and nodes between the two points. As such, Hammock links are used to represent develop-
ment phases. The activity network may include coarse- and fine-grained process components within the same
model. The coarse-grained components are named subnetworks of activities. These may be hierarchically
ordered within SPMS. The fine-grained components are specified within the coarse-grained components and

124 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

consist of the individual elements of the activity subnetwork. Both the coarse- and fine-grained process com-
ponents may be edited as discussed in section 7.1.2. Figure 48 on page 125 illustrates an example of process
expansion in a SPMS activity model, where the details of the aspect of process are describes at a finer grain.
The subnetworks are linked via interface nodes (products in SPMS) among the coarse-grained components
to form the complete process model.

Process component "A"

Process component "B"

Some Possibilities:

Process component “A" might be at the SYSTEM level.
Process component "B" might be at the CSCI level.
"B" might be considered "Part of" "A"

Process components "A" and "B" might be at the same
level and "B" specify greater detail than other portions
of "A". "B" might be considered "Part of" "A"

How do you want to view parts in the model editor?

Figure 48. Process Granularity / Expansion Concept. This figure illustrates an example of process expansion in a
SPMS activity model, where “process component A” and “process component B” are at the same architec-
tural level, e.g., CSCI level. Process "B might be a finer grained expansion of a process represented in
“process component A.”

The process components are parameterized to indicate the development mode and architectural granulanty

of the particular component. For example, a process component may be specific to a sequence of proto-
typing or reuse activities. This same component might operate on a subsystem (CSCI) level software compo-

STARS IS-15 Software Representation Work 125

nent. Each process component within the model contains values for these parameters. The user provides
project-specific data indicating the name, architectural level, development mode, and part of relationship of a
software component to be built by the software development process to the SPMS. This project-specific
information is used to determine which portions of the parameterized process model must be instantiated
into a project-specific plan.

Process models in SPMS may also include references to a process measurement model. The measurement
model 1s used to provide data collection points within the process model so that project-specific plans that
are generated using the process model are automatically instrumented to determine the success or failure of
the process at those data collection points.

If a process component has failed to meet the criteria specified by the measurement model, then the user is
given the option of replanning. This replanning supports rework activities by cloning user-specified portions
of the activity network. The effects of rework are propagated through the project plan by creating new ver-
sions of previously created products.

Three scenarios are supported in the prototype SPMS. The newly created version of a product may be
needed by tasks that have not yet started, by tasks that may be in progress, or by tasks that have already
been completed. In the case of the task that has not yet begun, the new product version replaces the prior
version of the product as the required input to the task. In the case where the new version is needed by an
executing task, SPMS adds the new version as an input but does not remove the old product version. The
individuals responsible for executing the task should be informed of the new product version. This is pos-
sible in SPMS because data on the resources and organizations to which they belong are kept in SPMS. In
the case of the task that has been completed, but work needs to be performed on a new version of the
product, the cloning of the activity network begins again with this task and follows the network of completed
tasks within the process component. This may result in the creation of new product versions that are also
propagated throughout the process model.

8.1.2.2 Project-Specific Tailoring

The process model may be tailored for use on a specific project in several ways. Elements of the coarse
grained process component hierarchy may be sclected for mclusion in a new process model. These selections
may represent different approaches to producing the same products, such as object-oriented versus top-down
design. The individual fine-grained process, product, and constraint components may also be tailored
through an SQL-based interface. The product producer and product consumer activites of process compo-
nents within the model may also be reviewed and edited.

The effect of the process model on the project-specific plan is also tailored by providing the development
mode and architectural level parameters to SPMS when specifying those software components that are to be
developed according to the process model. Those process model components that match both the architec-
tural level and the development mode of the software components to be developed are instantiated. All
other process components within the model are ignored in producing the plan.

The metrics to be computed during simulation of the plan are also sclected, and the threshold values to be
used as a criteria for success may be tailored. As a result of this tailoring, specific calculation methods for
the expert system shell are produced.

8.1.2.3 Project Scheduling and Resource Allocation

The instantiated plan that 1s produced by the SPMS prototype does not include duration data for the tasks
that have been created. This mformation 1s necessary before scheduling may be performed in the project
management svstem. Resources must also be assigned to tasks before resource Ieveling algonthms may be
applied. These user actions are done within the project management systemn. In the prototype SPMS this 1s
done by exporting an ASCII file to and from the project management system.

126 STARS Task 1S-15 Software Process Tools and Technigues | valuation Report Version 1.0

SPMS exports information relevant to the instantiated plan, such as the node types, their relationships with
other nodes, their named descriptions and, resources. The amount of information exported depends upon
whether the plan has been previously scheduled, resource leveled, and simulated. If it has been simulated, it
will contain resource allocations, costs, work breakdown structure, start and finish dates, scheduled dates, etc.
This updates information that may already exist within the project management system. Conversely, updates
within the project management system are available to be imported into SPMS.

8.1.2.4 Simulation

The scheduled project-specific plan contains all of the data that were exported to the project management
system by SPMS with the scheduled start and finish dates and resources updated by the scheduling and
resource allocation algorithms. This information is imported into SPMS. The plan includes scheduled start
and finish dates that are based upon the task durations which were entered by the user. The durations of
randomly selected tasks may be randomized by a user selected percentage. This can add a degree of realism
to the simulation by letting some tasks finish early and other tasks take longer than planned to complete.
During simulation, the execution of the plan may be constrained to follow the specified start and finish times
or the user may allow tasks to begin as soon as their input constraints are satisfied.

The simulator may be used as a means of validating process models, the low-level metric methods that are
produced to support monitoring, and the process-level metrics that may be graphically displayed during the
stmulation.

8.1.2.5 Adaptation - Replan or Remodel

One consequence of the simulation of the scheduled project-specific plan may be the failure of some process
components to meet the validation criteria that have been specified in the measurement model. This may
indicate unrealistic quality goals for some products. These goals may be tailored within SPMS. The failure
may also indicate the need to perform rework on the product. SPMS supports automatic replanning by
cloning user-specified portions of the project-specific plan. The cloned sections of the activity network that
are required to perform the rework are automatically spliced into the activity network. Rescheduling of the
plan 1s then likely to be necessary to assess the schedule impact of the new tasks that must be performed.

Another consequence of the execution of the simulation could be the realization that the process model is
inadequate to support the proposed software development project. Problem areas within the mode! may be
addressed by the user in an iterative cycle of model refinement, creation of new plans, and simulation of
these plans until the user is satisfied that the process model will support the user’s requircments.

8.2 SPMS: Port Assessment to the IBM RISC System/6000

SPMS integrates many commiercial tools to provide a robust software process management capability. The
following sections provide a description of these tools, their current contribution to SPMS and the issues
needed to be addressed to port the current functionality to the IBM RISC System/6000.

SPMS prototype was developed and delivered by Lockheed Software Technology Center in Austin, Texas,
on an Apple Macintosh system. ‘The prototype is an integrated suite of commercial off-the-shelf tools
designed to allow process definition and enactment during process project planning. SPMS combines an
expert system. a relational database ranagement system (RDBMS), hypertext interface technology and
project management syvstem capabilities (see Figure 49 on page 128). The result 15 a4 user-friendly tool that
allows a user to define a process model, to instantiate the model for a specific software development project,
and to simulate execution of the model on the basis of a set of softwaice quality metrics.

STARS IS-15 Software Representation Work 127

The purpose of this section is to examine possible approaches for porting the prototype iv the IBM RISC
System/6000. The role of each tool presently in the prototype will be identified, possibilities of direct porting

will be discussed, and possible alternative tools for the IBM version will be presented.

+ Knowledge-Based
Conceptual Model
* Monitoring Methods

and Rules -

~
C, Process
FORTRAN, Reasoning
Ada Component
Pgms
. J

+ Component Entry and I
Editing -

« Historical Data
» Process Components
» Process Models

Process
Model
Data Base

Project
Mgt.
System

+ Component Selection
and Model Definition
Execution Constraint
Selection

Metric Selection

User
Interface

il

Simulation Interface

L

Figure 49. SPMS Architecture.

128 STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

8.2.1 Process Model Database

The ORACLE relational database management system is used to provide the repository for process- and
project-specific information within SPMS. The language provided by ORACLE, SQL, provides the
fanctionality for retrieving information from the database by performing calculations on that data and
dynamically creating objects during execntion.

The functionality provided by ORACLE (including SQL) must be present in the ported version. RDBMS
capabilities are at the core of SPMS, and any implementation would require this functionality. There are
several process management databasc options:

1. Purchase ORACLE for the IBM RISC System;6000 and port “directly”.

ORACLE is available today on the IBM platform. Cost is approximately $16,000 to support up to 16
users. This approach seems to present the least risk we are familiar with the functionality of ORACLE
and are confident that the tool provides similar functional capabilities found in the Macintosh implemen-
tation of ORACLE. Learning time will be required in order to understand the IBM RISC System/6000
version of the ORACLE products.

2. Purchase another RDBMS system and “redevelop” on the IBM RISC System/6000.

Currently Informix, Sybase, Ingres, and several other RDBMSs are available on the IBM RISC
System/6000 and may provide better functionality for SPMS. We would nced to investigate available
products to examine their appplicability for use in SPMS design and determine the cost of an alternate
system. Another important factor to consider is the popularity of the RDBMS.

3. Use DBMS provided within some development/execution shell.

If IBM adopts some standard environment for use within the SEE that provides a DBMS capability,
SPMS should investigate using this functionality to provide seamless integration within the SEE. Again,
we would need to investigate the capabilities provided within the environment and design/develop SPMS
accordingly.

8.2.2 Process Reasoning System

NEXPERT Object is an expert system shell that allows users to move from traditional data processing to
knowledge processing, that permits an application to form conclusions from data and take direct action.
NEXPERT Object provides a natural way of handling tasks that require problem solving or reasoning.
Compared with other development tools, NEXPERT Object makes it easier to model the problem and sol-
ution space and to capture and reason with knowledge. As a result, problems can be solved that would have
been very difficult with conventional languages (such as Ada and C), with the result that design, develop-
ment, and maintenance are faster and easier.

Within the SPMS prototype, NEXPERT Object provides functionality in three major areas. First,
NEXPERT allows an object oriented representation of processes and products. Classes (of objects) which
have certain characteristics are defined. When an object of a certain class is created, it inherits all class char-
actenistics. This includes all methods (operations) associated with the class as well as attributes and relation-
ships to other classes. Such inhentance alleviates much programming by developers (initialization and logic)
and provides much functionality to the tool with only minimal programming. Sccond, objects representing
processes and products within SPMS must be dvnamically created and deleted to model the very dynamic
nature of the software development process. The memony management of these dynamic objects takes place
within the cxpert system shell relieving developers of time-consuming programming. Finally, NEXPERT
Object 1s used during process enactment as a shell from which to run the simulation. Rules within
NEXPERT Object begin the simulation, decrease the time during task execution, start and finish tasks, cal-
culate metrics for validation tasks, and determine whether tasks pass or fail quality checks.

STARS IS-13 Software Representation Work 129

As with ORACLE, the functionality provided by NEXPERT Object is central to the functionality provided
by SPMS. While it may be possible to replicate the functionality provided by NEXPERT Object, it is
perhaps the only readily available expert system shell that provides multiple inheritance and object-oriented
development capabilities. Both of these functions contribute heavily to the ability to perform rapid systcms
development as well as to develop a robust IBM RISC System/6000 SPMS prototype. There are several
approaches to porting this functionality to the IBM RISC Svstem/6000.

I. Purchase NEXPERT Object for the IBM RISC System;6000 and port “directly.”

NEXPERT Object is available today on the IBM RISC System/6000 platform at a cost of $12,000.
The runtime version for the IBM RISC System/6000 is $2,000. Its functionality is known and obviously
supports all present capabilities. In the initial prototype developed by Lockheed, NEXPERT Objectis
not used as completely as it could be. Currently, diagnostics are not tied directly to the expert system.
By exploiting the expert systems capabilities of NEXPERT object, intelligent “help” could be provided
to diagnose SPMS problems. SPMS on the IBM platform should use NEXPERT Object heavily for
classification knowledge modeling and process monitoring.

2. Remove expert system capabilities and replicate functionality in conventional programming language.

While this may be a possible solution, its feasibility is questionable in the current time frame. As men-
tioned before, expert systems provide rapid system development capabilities and alleviate much of the
programming required for control logic. This choice would limit the extensibility of SPMS in terms of
classification and diagnosis of process related problems.

3. Acqui.~ required functionality from another tool within the SEE.

It may be possible to remove NEXPERT Object from SPMS and redesign it to incorporate new tech-
nology. Detailed trade studies of any potential altematives would be necessary before making such a
drastic decision.

8.2.3 User Interface

HyperCard is an application provided on Apple Macintosh systems. It is a personal toolkit with which to
create applications for gathering, organizing, presenting, searching, or customizing information. It provides
tools such as buttons, cards, stacks of cards, and icons to rapidly develop these applications.

SPMS used HyperCard 2.0 to develop the user interface to the tool. HyperCard provides intuitive methods
for getting around within SPMS. Its point and click mechanism is easy to learn. However, HyperCard is
only available on the Macintosh.

Certainly any incamation of SPMS on the IBM platform will have to have a user interface. Just what that
user interface should look like and what functionality it should provide are not so certain. There are many
possibilities, several which are enumerated here.

1. Wnite a user interface package using the X windowing system.

While this is a possible approach, there are several already available on the IBM RISC System/6000 that
would provide all functionality needed.

2. Usc Motif for the user interface.

Motif is a standard windowing package provided on the IBM RISC System. 6000. For developing an
interface that will remain on the 1BM platform, Motif is probably sufficient.

3. Develop the user interface using a product that makes the interface portable among windowing systems.
XVT is a commercially available product that allows a user to build interfaces that are portable among
such widely used windowing systems as Microsoft Windows, Motif, Macintosh Windows, Presentation
Manager, and several character screens. XV s available today for IBM RISC System, 6000 systems at
a cost of $3.495. Interfaces built in XV could be portable among many systems.

130 STARS Task 1515 Sofiware Process Tools and Techniques Evaluation Report Version 1.0

A product similar to XVT is UIM/X developed by Visual Edge. UIM/X is an interactive tool that
allows developers to create OSF/Motif user interfaces. UIM/X’s interactive development environment
improves productivity in two ways:

a. It enables developers to draw their interfaces instead of having to hand code them; and

b. It frees application developers from time-consuming compile, link, and debug cycles owing to its
built-in C interpreter. UIM/X is not currently available on the IBM RISC System/6000, but there a
possibility that it will be made commercially available for use in an acceptable time frame.

4. Combine options 1, 2, and 3.

8.2.4 COTS Project Management System

MicroPlanner Xpert is a project management system (PMS) that provides all traditional capabilities
including scheduling resources, costing, task scheduling, etc. The main reason for choosing MicroPlanner
Xpert was that it readily exports data needed by SPMS. It would be preferable to have a PMS that was
designed to be embedded rather than as a stand-alone tool and that utilized a relational database as its infor-
mation storage rather than proprietary data structures that cannot be programatically accessed.

MicroPlanner exports, in a textual form, all information needed by SPMS to create objects that represent
tasks, products, and relationships among objects. Also, SPMS can export the information back into
MicroPlanner when changes are to be made to the project schedule. The integration between SPMS and the
project management system is awkward and time-consuming. While the transformation of information
between the two tools is automatic, it does take a great deal of time to complete. A more elegant solution
will need to be designed and implemented in a final version of the tool. MicroPlanner Xpert was chosen as
the project management system for the prototype, as it was the only tool readily available that exported all
information needed by NEXPERT Object to create the corresponding objects.

Project management capabilities will certainly be needed in the version on the IBM platform. Complex
resource and personnel scheduling aigorithms are provided by any good PMS and should not have to be
developed during the port to IBM equipment. We hope that a more seamless integration between SPMS
and the PMS can be implemented. The approaches to be considered in the PMS area are as follows:

1. Purchase a PMS similar to MicroPlanner for IBM RISC System/6000.

MicroPlanner is not available today for the IBM RISC System/6000. We plan to examine the XPM
project management system being encapsulated on HP Softbench. Given that this is not an acceptable
alternative, a brief trade study of similar products would have to be undertaken to see whether a suitable
alternate PMS is available.

2. Purchase another PMS that provides a callable tnterface or is built on SQL.

If a PMS provided a callable interface to its functionality, the user would never get the feeling of
“leaving” SPMS and entenng the project management system. All project management interaction could
be done from within SPMS. One step further is to look for a project management system that is built
on SQL so that the data used by the project management system is the same data that is created and
used within SPMS. That is, all project management,process management data is stored in the same
database.

J. Wnte our own project management system.

Although there are many commercially available systems, we may be able to write only the portions of a
PMS that are needed to support SPMS. This would allow us to seamlessly integrate the PMS functions
as SPMS, and the PMS would be dnven by the same data (as opposed to two sets supported by stand-
alone systems). The complex algonthms for scheduling may be available commercially, and simple draw
packages are available. This approach would provide the most flexibility but may not be economically
or technically feasible.

STARS I$-15 Software Representation Work 131

4. Devise a scheme for using any commercially available PMS.

If possible, the steps for including data from any PMS into SPMS could be detailed and provided to
those users with in-house capabilities. Certain assumptions would be made of the PMS, such as avail-
ability of information and some type of exporting capability. SPMS would include one standard PMS
and the instructions for integrating with another. This approach would make the tool attractive to
organizations with thcir own PMS.

8.2.5 Conclusions

It may be decided that SPMS should include more functionality than the original prototype. As this is a
port assessment section, those additional capabilities are only discussed briefly in the following paragraphs.

1. Exporting Process and Project Information to Other Project Monitoring Tool(s).

Tools such as EAST and K1 Shell provide project guidance and monitoring for all levels of users. These
tools provide process adherence, are commercially available, and usually provide many capabilities that
members of a software project management/development team will need. Integration of the front-end
process and project planning data from SPMS with actual process execution could provide users with a
complete system for defining processes, implementing plans on those processes, monitoring the develop-
ment process, and finally developing, testing and maintaining the software that they were developing.

2. Providing Coordination Technology.

One additicnal capability might be the inclusion of tools and/or methodologies providing the
functionality for a group of users of SPMS to participate in ongoing discussions regarding the process or
project. At what level within the SPMS design this might be of most importance is not clear.

3. Including Resources in Simulation and Monitoring Capability.

Currently, the process simulation provided in SPMS assumes unlimited resources (i.€., all equipment
needed for a certain task is available at any given time). To truly model software development, resource
information must be included in the simulation.

4. Providing Costing Information.

In the current prototype the MicroPlanner project management system exports cost information associ-
ated with each resource (personnel and equipment). This information is currently not used in the SPMS
prototype but should be included so that costs can be recalculated during simulation when plans deviate
from the original schedule. This information will also be useful in estimating the impact of replanning
and rework.

5. Integrating with a Software Engincering Environment.

If a SEE framework is selected on which SPMS must reside which enforces certain interface or develop-
ment approaches, SPMS will be integrated within this environment.

6. Integrating COCOMO Tools into the Instantiation Processing.

Integrating COCOMO tools in the SEE project management tools would provide some level of auto-
matic generation of duration estimates, cost estimates, and resource scheduling.

7. Using Expert rKnowledge and Statistical Information to Create Heunstic Rules.

Nextra, a knowledge acquisition tool from Neuron Data, will generate classification rules that can form
th- hasis of more advanced process monitoning. This capability 1s currently only available on the Apple
Maaintosh.

8. Integrate Process Model, Metric Model, and Data Collection Model Tools into the Software Engineering
IF'ovironment.

132 STARS Pask 1S-15 Software Process Tools and Techniques bvaluation Report Version 1.0

Further research is needed to understand the relationship between metrics and software development
processes. Friendly interfaces are nceded to add metrics pertaining to the software development process
as well as consistency checking to assure that all needed information is acquired for metric calculations.

All the above approaches and alternatives are based on the final copy of the SPMS systemn delivered by
Lockheed on June 6, 1991. We assume that the SEE is not enforcing the use of any specific commercial
tools (such as a particular DBMS cr project management tool). Tinally, we assume that no development
shell has been prescribed. If any of the above assumptions prove false, then the approaches described above
may change.

8.2.6 SPMS: Port Plan for Porting SPMS to the IBM RISC System/6000

The purpose of this section is to provide an initial schedule for porting the Software Process Management
Systern to an IBM RISC System/6000. A summary of candidate trade options 1s provided in Figure 50 on
page 134.

|79
"

STARS IS-15 Software Representation Work 1

Estimated
POSIX/AIX HP SoftBench /M
Direct Capability " row imerface o HP SaftBench ® 217 U/m (Posix)
" ng ® 247 I/m HP
Port MicroPlanner » encapsulating SoftBench
XPert PMS SPMS
Re-Architect
Current Product
Replace ® trade studies o POSIX/AIX Issues e 67 I/m (Posix)
o PMS ® new pms and HP SoftBench e 87 /m HP
interface training SoftBench
P | write own o trade studies to | POSIX/AIX Issues | ® 9-127 Vm
PMS de::yrrine make and HP SoftBench (Posix)
t . . or training ® 9-207 Vm HP
funCtlonahty e new interfaces SoftBench
i | Replace * trade studies * POSIX/AlX issues | ® 6-247 I/m
N for new expert and HP SoftBench (Posix)
expert system training ® 6-267 I/m HP
o e new interfaces SoftBench
n Write own e trade studies to | e POSIX/AIX issues e 18-367 I/m
Nexpe determine make or and HP SoftBench (Posix)
F P .rt Ii buy training e 18-387 I/m HP
S unctionality e new interfaces SoftBench

Figure 50. Candidate Trade Options for SPMS Port.

134 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

8.2.7 Schedule

Figure 51 through Figure 53 describe an initial schedule for porting the SPMS capability to an IBM RISC
Systemn/6000. The task entitled “Design, Develop, Port SPMS Software to IBM RISC System/6000” is the
actual porting task. The other tasks ider iified address developing project documentation and training mate-
nals, attending meetings, and conducting SPMS/R training sessions.

The task “Design, Develop, Port SPMS Software to IBM RISC System/6000” will incorporate many sub-
tasks. Those tasks are ciumerated here:

1. Trade studies on state-of-the-art commercially available tools for inclusion into SPMS.

As described earlier, SPMS combines several commercial off-the-shelf tools. Initial prototype develop-
ment integrated a database management system, an expert system, and a project management system.
To determine whether this suite of tools is the way we should continue must be addressed in the init‘al
stages of the port. The following chart represents options available and issues that must be addressed
when developing the final plan for the port. These options are elaborated in section 9.1 of this report.

2. Training on the IBM RISC System/6000.

There will be some learning time when the IBM RISC System/6000 is installed. As AIX is essentially
UNIX, learning time should be negligible.

3. Developing new SPMS/R design.

At the very simplest level (porting directly all current technologies incorporated into SPMS), the tool
will have to be redesigned somewhat when a new interface is introduced. The prototype version uses a
HyperCard interface that is not available on other platforms. In the more likely case that radical rede-
sign must take place (consider inclusion of such tools as KI Shell or HP Softbench), the redesign task
will be considerably longer. Incorporating better technologies will help in the actual development, and
the added time spent in design will be saved during coding. It may also be determined that additional
features should be included in the design to provide a more robust, usable system.

4. Porting applicable portions to the IBM platform.
The portions that are identified as “portable” will be moved.
5. Developing SPMS/R on IBM RISC System/6000.

On the basis of technical discussions with the SPMS developers, STARS personnel, and interested third-
party vendors, we believe that the correct choice for initial port is to directly port the SPMS capability as a
stand-alone tool hosted on AIX. This will allow functionality in a relatively short time frame on the IBM
platform. Having the tool available for beta testing quickly will provide valuable feedback for inclusion in
the next version. There are still many questions that must be addressed before a robust capability that com-
bines K1 Shell, SPMS, and HP Softbench functionality can be designed and implemented. These issues are
discussed in detail in section 9.1 of the Software Process Tools and Techniques Evaluation Report.

8.3 SPMS Prototype System User Training

The SEI Process Group has issued a request to use SPMS to support their software process modeling work.
To gain valuable knowledge from the use of the SPMS evaluation prototype, IBM provided SEY with a
training class in the use of the SPMS prototype. Support of the use of the SPMS evaluation prototype is
planned, at a linuted level. through the STARS “T7 increment.

STARS IS-13 Software Representation Work 135

t6-z21] 62| 1o Buneeyy meinel pueHy,
ol . . yeiq wodey uoleneal
_ ¢6-95| L6-0cq O0F wsiueyoepy uopoeus dojeasq
_ o . eulnO uodey uojenieAs
x 16-0€-6 00 wsiveLSY UOHOBUS Jenteq
W 16-226] 16526 €0 Bunoop Moo pUBHV
z6-z1l 1e01el oy yeiqg vodey uonenfeal
[_@ J uoneloN/I00] dojereq
a1 : eulinO uodey uojienfeal
! 16-91-6 0’0 UOlRION/00] JeAle(
z6-92 1658 o2y 0009 OSIY O} eremjos
R 3 SIS uod ‘dojeneq'ubiseq
2694 1618 o9 | Ueld uoensuoweq uopuyeq
! 0 5560014 0senyj0g dojersQ
16066l 1616l 02 eulinO Hodey uoyenfeas)|
m wsiveyoep uopseus dojereq
’ " . euinQ Uodey uolenfeay
_”% 16-91-6¢ 16-1 L 0e uoeloN/100 dojeneq
1628} 1619 0 0009 weisAs OSIH ey
% 16-1-8 PO-r.J 0.0 yod :_OOQ—
6ny |np unp Aepy 2dy sep qe4 uep oeQ AON 190 deg bny ysjuig vels shep'sinoom
2661 1661 uojreing

Figure 51. SPMS Port Plan (1 of 3).

STARS Task IS-15 Software Process Tools and Techniques Evaluation Report Version 1.0

136

w le-z2s| 62s | €0 Guneeyy metney pueyy|

as. Q7. , ue|d uopesisuoweq uoniuyeq
% 16925 | 16925 00 $5600id 81EM}j0S JeAle(

~ e6S1S| zeel-s| co @9uelejucd peje|e) puelly

529 | e6es | o Uodey feuld uolienren3
Y | wsweweyy uonseuz dojeneg

.v 26-9-S 0'0 yeiq uodey uopenrea3)
. WSITRYOB UONOBUT JeAle(
uss
¢89S zeLv | o2 uonessuoweq uopiuyeq
£5820.d eremyog doasieQ
W 26-9-¢ 0'0 ue|d uonelisuowe uonuyeq
$50001d 81eM}j0S Jealeq
_ c6-1E-€ e6-1EE} g Buijeepy meirey puspy|
m ¢6-1E-1 26-62-1 c'o Bupjeeyy meiney pueny
. uodey [eul4 uoenmeay
L ¢S 1e1zz| O uopeloN o] dojereq
16-22°1 0’0 yeiQ wodey uorreniea3
uofiejoNN00] JealeQq
— i6-81-Cl | 1691-2L] ¢'0 80UB10JUCO polelel PUBHY|
ny Inf unp Aeyy Jdv Je G Uer 960 AON 190 des bny ysy Vels shep'syeom
2661 166t volreinQ

137

STARS IS-15 Software Representation Work

Figure 52. SPMS Port Plan (2 of 3).

_ c6-1e-L 26-6¢-L t'o Buneeyy meirey puepy|
podey
4 26-52-9 0'0 [eul4 uofen[eAs wsiueyoeyy
uoyoeUT JeAleq
26°52-9 0'0 vodey feuld uojienfeay
) UORRION/IO0 L JeAlleq
e6-leL | 26€29 | 0 sse|D
Buwuresy pue isej eydpy
_s 26-52-9 0'0 srepejepy bures) senreg
g ! . uoddng
e | 2629 | ool reauyoe,, pue uogeresull
g g . nal ‘13S 0}
26-52-9 26-2-9 0't sieporep Bujures) dojersq
uojfensuoweq uopugeq
26-01-L 00 $$890id eremyog
0'0 0009 weisAs OSIY
e6-9Cs U0 e5eM}j05 SINJS JeAteq
“Bny inf unp Zeyy 10y Jey qed Uer seQ AoN 190 des bny ysivig weis sAep'syeom

c661 1664

uopreing

Figure 53. SPMS Port Plan (3 of 3).

STARS Task 1S-15 Software Process Tools and Techniques Lvaluation Report Version 1.0

138

A training course has been designed to instruct users of SPMS. The course is set up to run for one-and-one-
half days and gives students opportunity to build a process model, tailor the model, create a plan from the
model, and finally simulate the plan. The following section describes course content and handouts.

8.3.1 SPMS Training Materials and Discussion

On the first day of the training class, students are introduced to SPMS, given background on the terminology
to be used, a discussion of process models and project plans, and introduced to building a model by using
the graphical representation facility. Next, the user will import this model into SPMS and tailor it according
to his or her personal preference. Finally, the user will create a project plan based on his or her modified
model, schedule the plan, and simulate plan execution.

On the second day of class, students will validate tasks in the plan, and on the basis of the outcome of
validation may rework the model or project plan. More complex models will be introduced, and the pre-
vious steps repeated. The class will close with discussion and questions. The class will perform six exercises
on SPMS.

The class will be given a “generic” process model to input. This example is based on a draft ISO standard
for software life cycle processes. The hardware and software needed for the class are identified in the fol-
lowing section.

8.3.2 SPMS Evaluation Prototype: Hardware/Software Requirements

The purpose of this section is to provide the hardware and software requirements for installing the SPMS
system evaluation prototype. An understanding of how to use a Macintosh computer is assumed as well as
a knowledge of the components of the SPMS system. These components are the ORACLE RDMBS,
NEXPERT Object expert system shell, HyperCard, and MicroPlanner Xpert.

8.3.2.1 Hardware Requirements

All of the components of this system are capable of running on most Macintosh computer systems (from the
Macintosh Plus to the Macintosh IIfx). The only limiting factors affecting the decision upon which com-
puter system to select for the installation of the SPMS software are the amount of memory in the computer
system, the amount of hard disk space that is available to the computer, and the performance capability of
the computer selected.

The SPMS systemn needs approximatcly 9 megabytes of RAM to execute the plan provided with the system
(Plan-1). This plan contains 75 products, 240 tasks or milestones, and 448 constraint relations. A larger plan
would need more memory. The hard disk on which the SPMS system is placed will need 6 megabytes of
storage for the software to be installed. ORACLE’s disk partition should be expanded an additional 10
megabytes (20,480 partition units) - not including the 5 megabytes needed for ORACLE itself, which brings
the total up to 15 megabytes of storage for ORACLE. The 10 megabytes of expansion will provide suffi-
cient room to load and work with the database tables and build some new models and plans. Finally, plan
for an additional megabyte of storage for NEXPERT’s NDL interface. This provides a total of 22 mega-
bytes of hard disk storage for the SPMS system (6 for SPMS, 15 for ORACLE, | for NEXPERT).

The final factor to consider when deciding what type of Macintosh computer system on which to install the
SPMS system is the syvstem performance required. SPMS was developed on Macintosh 1fx computers, with
160MB of hard disk, 20 megabytes of RAM, and two monitors - a 217 two-page monochrome and a 137
RGB monitor. Theorctically, each of the components of the SPMS system (HyperCard, NEXPERT,
ORACLI, and Microplanner) will run on a Macintosh Plus; therefore, providing the requirements stated
previousty are met, SPMS should run on a Macintosh Plus. Performance requirements must be addressed
when considenng that the SPMS system is reasonable when executing on a Macintosh Hfx. It 1s recom-
mended that a Macintosh I class computer system (Macintosh 11, Ix, Hs1, Hex, e, HiX) be sclected, to be

STARS IS 13 Sofiware Representation Work 139

accompanied by a large monitor (19” or larger or multiple monitors). Use of a smaller screen will result in
poor display performance and display jittering, which makes small display use cumbersome and inefficient.

83.2.2 Software Requirements

The SPMS system requires ORACLE for the Macintosh v1.2, NEXPERT v2.0B, and Microplanner Xpert
v1.0.4. Development started with system v6.0.3 and finished with System v7.0. The only system version
requirement comes from the dependencies of the components of the SPMS system (HyperCard, etc.).

8.3.2.3 Installation of the SPMS System
The SPMS Evaluation Prototype system is distributed on 7 diskettes. They are SPMS-1, SPMS-2, SPMS-3,

SPMS-4, SPMS-5, SPMS-6, and NDLClient “Execute” Stack. This software can be installed anywhere on
the computer system’s hard disk, as long as the hierarchical structure illustrated in Figure 54 is observed.

fee=F———>—=———sPMs=0e——————

8 items 130.8 MB in disk 23.3 MB available
Name Size Kind Last Modified
D O Execute Plan- 403K folder - Thu, May 2, 1991, 3:24 AM ats
D D Headers 23K folder Sat, Apr 20, 1991, 3:10 AM
D £ Models TT3K folder Sun, Apr 28, 1991, 2:31 AM
D sPMS stack 80SK HyperCard document Wed, May 1, 1991, 5:23 AM
D O Stacks 815K folder Sat, Apr 27, 1991, 4 55 AM
o) Xpert 1,283K folder Thu, May 2, 1991, 2:51 AM
o] O Exports from SPMS 103K folder Wed, Apr 24, 1991, 957 PM
b 3 Exports from XPERT 1,180K folder Sun, Apr 28, 1991, 1:33 AM 13
& _ (D]

Figure 54. Hierarchical Structure of SPMS Folder.

To begin, create a folder on the computer system’s hard disk and provide it an acceptable name. In

Figure 54, it is named "SPMS” (the name of the window). The SPMS system does not depend upon the
name of this folder, but it does depend upon the naming and placement of the folders within the SPMS
folder. Disks SPMS-1 and SPMS-2 contain files that are exports from ORACLE. These files, named
spms.dmp.1 through spms.dmp.9, need to be imported into ORACLE by using the Import card for the
System Stack that was provided with ORACLE. Before the export files are imported, replace the init.ora in

140 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

the Drivers folder of the ORACLE home folder with the init.ora provided on disk SPMS-2. This file adjusts
some of the default system variables so that SPMS’s tables will load into and run under ORACLE.

Before executing the SPMS system, a folder must be allocated for SPMS.

The location of the files shown in Figure 54 are as follows:
» The SPMS stack and Headers folder are located on disk SPMS-2.
+ Disk SPMS-3 contains the Execute Plan and Stacks folder.
» The folder Models resides on disk SPMS-4.
» Because of the size of the folders contained within the Xpert folder - Exports from SPMS and Exports
from XPERT - the Xpert folder is divided between disk SPMS-4 and SPMS-5.

A folder must be created within the SPMS home folder with the name Xpert. All exports from the SPMS
folder will be placed in the Xpert folder. The exports from the SPMS folder are contained in the folder
Xpert.part.1 on disk SPMS-4. Also, the folder Exports from XPERT needs to be placed with the Xpert
folder. It is located on disk SPMS-5 in the folder Xpert.part.2. The last two disks contain additional stacks
that are optional to install but are not needed to run the SPMS system. The disk SPMS-6 contains stacks
that permit access to the metrics functionality of the SPMS system directly. ‘Briefly, the stacks on this disk
are the

» Generator stack, which allows the generation of the ORACLE tables used to hold metrics data and for
entering the structure of the project upon which ‘he metric measurements will be performed;

* Software quality stack, which gives access to the questions used to collect data for the metrics; and

+ Calculator stack, which will allow the calculation of selected metrics.
The disk NDLClient “Execute” stack contains an alternative version of the stack used to execute a plan.
This version uses a client-server version of the NEXPERT system that uses the NEXPERT Development

environment instead of the NEXPERT Runtime environment for its processing. To use this stack, replace
the stack contained with the Execute Plan folder in the one on this disk.

At the time of this writing, a bug in the NEXPERT runtime prevented the use of the Execute stack so that
the only way to gain access to the functionality of the Execute stack was to use the NDLClient stack on this
disk.

8.3.2.4 Summary
In summary, the installation of the SPMS system requires the following items:

Hardware:

= 9 Megabytes of RAM for the SPMS system to run (required for NEXPERT Development Environ-
ment)

¢ 6 Mcgabytes of RAM for the SPMS system to run (required for NEXPERT Runtime) when its bug is
fixed

e 22 Megabytes of hard disk to install SPMS (required)
¢ 197 or larger monitor (recommended)

* Macintosh 11 class computer system (recommended)

STARS 15-15 Software Representation Work 141

Software::
* ORACLE for the Macintosh v1.2 (required)
* NEXPERT v2.0B with ORACLE authorization (required)
» Xpert v1.0.4 (required)
+ HyperCard 2.0 (required)
« System v7.0 (required for use with NEXPERT Development Environment).

Also, the software provided on the disks SPMS-1 through SPMS-S5 needs to be installed within a folder
using the hierarchical layout shown in Figure 54 on page 140.

8.4 Major Lessons Learned from SPMS Migration Analysis and SPMS
Training

This section summarizes major lessons learned from the SPMS Migration Analysis work and from preparing
for and teaching a class in the use of the SPMS evaluation prototype.

8.4.1 Lessons Learned from SPMS Migration Analysis

From our analysis of what is required to port the SPMS prototype system from the Apple Macintosh to an
IBM RISC System/6000 we have leamed several lessons that need to be conveyed to CASE vendors and
framework developers:

l. Project management systemns can no longer be viewed as “stand-alone” systems that only project man-
agement and planning teams’ use. They must be provided with programmatic interfaces that permit
their effective integration with tools that support process management and software development.
Further, project management system database standards should be developed to permit standard open
access to project management data that other applications can access and update.

2. Control integration tools such as HyperCard permitted SPMS to be developed in an accelerated
timeframe, as the SPMS developers were able to take advantage of products that provided programmatic
interfaces for HyperCard integration. Selection of a suitable control integration mechanism for the RISC
System/6000 and lobbying vendors to provide programmatic interfaces to facilitate tool integration are
essential. The success of HyperCard should be used as a model by SEE Framework vendors and CASE
application providers.

142 STARS Task I$-15 Software Process Tools and Techniques Fyaluation Report Version 1.0

9.0 IBM STARS SEE Process Management Architecture
Discussion

Exactly what will be included in a final version of a process management system is not completely clear at
this time. Several strategies have been discussed and reviewed. The following sections describe possible
integration strategies, including issues to be addressed and a candidate IBM STARS process management
architecture.

9.1 SPMS Coexistance Strategy with Other Process Management
Capabilities

The SPMS prototype has been described in detail in previous sections of this report (8.1.1, 8.2). For future
process design/modeling/enactment capabilities other process management facilities may be required to be
integrated with SPMS. The purpose of this section is to describe two systems that may provide process
control capabilities, integration facilities and support for groupware functions needed to provide a robust
process management capability. We describe Hewlett Packard’s (HP) SoftBench and UES’s K1 Shell and
present issues regarding a coexistence strategy for all three tools.

9.1.1 HP SoftBench

HP SoftBench 1.0 is a software development environment consisting of both an integrated set of program
development tools and a Tool Integration Platform. HP SoftBench provides five tools that target the
program construction, test, and maintenance phases of software development. In addition to these tools,
which are standard in SoftBench, users can use the Tool Integration Platform, which allows for integrating
other tools into the environment. The Tool Integration Platform is responsible for providing distributed
computing services, tool communication, OSF/Motif appearance and behavior across all tools, and inte-
grated on-line help facility.

Distributed Computing Services

The HP SoftBench tools can execute in any host in the network, provided that the host has HP
SoftBench installed. The remote execution is transparent 1o the client tool that requested its services.
Distributed execution provides full utilization of network resources. With HP SoftBench, data can reside
on any host in the network. A tool is able to access the desired data independent of where the tool is
running. To implement this transparent data access, HP SoftBench uses either Network File System
(NFS) or HP’s Remote File Access (RFA), depending on which is available on the system. HP
SoftBench is built on the X Window System, version 11, an industry standard. This allows programs to
exccute on one system and display and support user 1;O on another.

Communication

The HP SoftBench tools communicate in a networked, heterogenceous environment via a broadcast com-
munication facility designed to support close communication of independent tools. Message requests
allow one tool to invoke the functionality of another tool, and notification messages allow tools (or the
user) to define triggers that respond to events and initiate other actions. Tool communication allows
users to customize and extend the HP SoftBench environment.

Users may bring their own tools into the TP SoftBench programming environment by using the [P
Encapsulator. One or more tools may be linked together to support a task or process. The results of
the encapsulation process are an encapsulated tool with a consistent user interface based on the

OSE, Motf appearance and behavior and the abidity for that tool to communicate with the other HP
SoftBench tools.

IBM STARS SEE Process Management Architecture Discussion 143

OSF Appearance and Behavior across All Tools

HP SoftBench provides a multiwindow graphical user interface. This allows for an easy-to-learn system
that requires little need for reference to documentation. Productivity is increased by having a consistent
user interface across all tools. HP SoftBench implements the OSF/Motif appearance and behavior
adopted by OSF as an industry standard.

Integrated Help Facility

The help facility cooperates with the other tools in the environment to service the user’s request for help.
Help can be obtained for gencral information, context-sensitive information, and definitions of terms
used by any of the HP SoftBench tools.

9.1.2 Kl Shell

K1 Shell is an object-oriented environment for creating and executing software assistants that provide “deci-
sion support.” The KI Shell development tools are used to represent (in a declarative, machine-readable
form) a method by which any end-user can progress through a complex collection of activities and use mul-
tiple, existing software applications. An example of this is a prescribed process that must be followed by
several persons on a project.

The runtime KI Shell Library is a collection of generic utilities designed to interpret a method representation
created by the KI Shell development environment.

The term assistant is used to describe the final, KI Shell-generated software, which comprises of a method
representation, wterfaces to applications, and the runtime KI Shell utilities. The assistant aids the end-user
in the completion of activities according to the represented method (or process).

K1 Shell is used by those persons who specify the method (process), a programmer who implements the
method via C language programming, and the final user who must follow the method (process) prescribed.

9.1.3 SPMS, Kl Shell, and HP Softbench Coexistence Strategy

The coexistence of SPMS, KI Shell, and HP Softbench will require resolution of many issues. Through
discussions among SPMS designers and implementers, KI Shell developers, STARS personnel as well as
reading HP Softbench literature and attending demonstrations, we recognized and raised the following issues:

1. KI Shell provides enactment capabilities for executing processes. SPMS provides simulation of exe-
cuting processes. The ability to integrate both tools is desirable.

2. KI Shell provides a role-based view of a process, while the SPMS provides an activities based view of
the process. Both are necessary, however neither is sufficient by itself. A tool combining both (and
perhaps other) views is desirable.

3. Both tools currently use the same database management system (DBMS). There is very hikely some
overlap in the data being kept by cach tool as well as differences in the data representations used by
cach.

4. SPMS provides some automatic simulation of a process as process development continues. K1 Shell
relics on hand simulation of a process to validate the steps. It would be desirable to integrate SPMS
automation techniques with K1 Shell enactment capabilitics.

5. KI Shell provides a rich set of control structures for pavigating through a process. SPMS allows condi-
tional replanning by instantiating portions of the process.

6. HP Softbench provides inter-tool communication capabihtics. Both tools could take advantage of thus
functionality.

144 STARS Task 1S-15 Software Process Tools and ‘T echniques Fvaluation Report Version 1.0

10.

. KI Shell makes decisions and coordinates activities based on low level activities such as availability of

inputs. SPMS provides more global information and coordination based on not only availability of
inputs but also schedule and resource allocation. Both capabilities are needed in a final system.

. KI Shell develops a process model via a frames editor that has knowledge control structures, data

storage, and different roles. The SPMS uses the front end of XPert project management system to lay
out tasks and products as well as their relation to each other. How these two representations can be
combined is an issue to be resolved.

. KI Shell uses system-level calls from within C routines to execute applications. SPMS includes an

expert system shell which could be used to execute applications. HP Softbench will be Portable
Common Tool Environment (PCTE) Tool Interface Standards compliant. Both SPMS and K1 Shell
could make calls to Softbench to become portable among systems.

Neither SPMS nor KI Shell provides a process architecture classification standard. If a classification
scheme is derived, should both tools be compliant?

9.2 IBM STARS Process Management Architecture Options

There are several architecture options that could be selected for providing a software process management
capability for the IBM STARS SEE. These options include:

1.

Stand-alone SPMS and KI Shell under AIX

This option involves the non-integrated operation of both SPMS and Kl Shell executing on top of the
UNIX operating system. SPMS would support activity-based process modeling. KI Shell would
support role-based process modeling and the implementation of a system to invoke tools, based on the
process requirements for the tasks allocated to each user role.

Loose integration between SPMS and the KI Shell under AIX

SPMS would support activity-based process modeling. KI Shell would support role-based process mod-
eling and the implementation of a system to invoke tools, based on the process requirements for the
tasks allocated to each user role. In addition, KI Shell would maintain process state information,
process metrics, and process activity information that couid be used by SPMS to monitor and track the
process being supported by KI Shell against the activity-based process model for a project. Integration
would be accomplished by sharing an ORACLE-based process state and history database.

Integration of both KI Shell and SPMS on top of a software engineering environment, such as HP
SoftBench.

In addition to what is provided by the loose integration of KI Shell, integration into a software engi-
neering environment framework provides the ability to more tightly integrate SPMS, K1 Shell, and an
approprate project management tool. The process integration capabilities provided by K1 Shell are
beyond the capabilities of most currently planned software engineering environment frameworks. The
System Integration Library of KI Shell could be reimplemented to use the software engincering environ-
ment’s services, and would provide a more robust process management capability than that of most tra-
ditional integration services. Further, making K1 Shell PCTLE-compliant and migrating it to a
PCTL-compatible software engincering environment framework would ensure that K1 Shell process
svstem applications could potentially be rehosted on any UNIX workstation for which there is a
PCTE-compilant software engineering environment framework.

In the case of 1P SoftBench, the K1 Shell Systems Integration Library (SIL) could be reimplemented to
employ HP SoftBench control integration services after HP SoftBench has been upgraded to support the
ECMA PCTE Tool Interface Standards. A K1 Shell application 1s developed by writing a C host
program that employs the SII to develop process systems. An HP SoftBench apphication encapsulation
can be accomplished in a similar manner. employing the “encapsulator’s” control integration services.

By making the KI Shell services consistent with those provided by HP SoftBench’s service. more robust

IBMSTARS SHE Process Management Architecture Discussion 145

process systems can be developed, that not only integrate applications in a software engineering environ-
ment and automate execution steps, but automate the processes governing their use.

The use of a framework which provides data integration services, is not aggressively being pursued at this
time. However, is a framework is selected that provides us with a PCTE data integration capability, we
will assess this capability and revise our process support environment plans, as required.

The selection of these options is dependent on the software engineering environment framework selected by
the IBM STARS SEE task.

9.3 Product Integration Strategy

Like most process related tools, both K1 Shell and SPMS must provide modeling features. SPMS uses
MicroPlanner for this purpose, while K1 Shell also provides its own interface for process modeling. SPMS
has features for process simulation. KI Shell has features for process enaction and process management. In
this section, we will present an integration strategy.

9.3.1 The Components for a Process Support Environment
In this section, we will discuss the components required for a Pracess Support Environment (PSE).

Project Planning Component: A Process Support Environment should provide services to support the
planning of software development efforts. Our candidate tool to support software project planning is
MicroPlanner. Process planners and process engineers will work to identify and develop project activities
based on the project objectives to be accomplished and the processes that will guide how project activities
should be performed.

Activity-Based Process Modeling Component: A Process Support Environment should provide services to
support the modeling of software processes. Our candidate tools to support activity-based process modeling
are SPMS and AMS'2 . The project plan prepared in MicroPlanner will be imported into SPMS. Process
engincers will take the project plan and use SPMS to instantiate it, based on existing or planned processes.
AMS will be used to assist process engincers identify reusable process assets to support their process mod-
eling tasks.

Process Model Simulation Component: A Process Support Environment should provide services to
support the testing of software processes before they are installed for use. Qur candidate tool to support
process model simulation is SPMS. SPMS provides process engincers with this capability.

Process/Project Planning Support Component: A Process Support Environment should provide services
to support the integration of existing process and project data to facilitate process model and project plan
refinement. Our candidate tools to support process and project planning support are SPMS and
MicroPlanner. SPMS provides process engincers and project planners with the ability to incorporate the
data necessary to prepare project cost estimation models, such as COCOMO. Further, data available to
SPMS may be used to update the project planming data in the project planning and management tool, c.g..
MicroPlanner.

Role-Based Process Modeling Component: A Process Support F'nvironinent should provide services to
support the development of role-based process models. Our candidate tool to support role-based process
modeling 15 the KT Shell development environment. Further. it may be helptul to augment K1 Shell’s devel-

12 The IBM STARS Asset Management System (AMS) s being developed by the IBNT Reuse Team composed of
members from 1BN FSD and SAIC.

146 STARS Task IS-15 Software Process Tools and lechniques Evaluation Report Version 1.0

opment capabuity with a suitable CASE tool to support systems analysis and design. The KI Shell develop-
ment environment provides process engineers with tools to allocate activity-based processes to project roles.
The role-based process model will provide knowledge of the project activitics that have been assigned to all
project role categories, such as process engineer, project manager and software developer.

Process System Development Tool Component. A Process Support Environment should provide services
to support the implementation of role-based process models. Our candidate tool to support process system
development, e.g., implementation of the role-based process models as an executable system, is the KI Shell
development environment. Further, depending on the host implementation language selected, integration
function libraries, such as ORACLE’s PRO*C may be required. The KI Shell development environment
provides process engineers with tools to implement the specified process models as an executable process
system.

Process Enactment Component: A Process Support Environment should provide services to support the
enactment of the project’s process. The KI Shell-based process system developed will serve as the mech-
anism for ensuring process, tool and application system availability to all project members. SPMS may be
called on as a service from a KI Shell process system to support given process steps, such as computing and
providing product metrics.

Process Monitoring Component: A Process Support Environment should provide services to support the
monitoring of the project’s processes, in order to provide support for measurement collection, and ultimately
process unprovement. The KI Shell application will provide “tactical” process enactment support and record
events in the “process state and history database.” SPMS will provide “strategic” process managemeni
support by monitoring the software process for aggregate trends requiring process analysis and improvement.

An overview of the process components identified above is provided in Table 3.

BN STARS SEL Process Management Architecture Discussion 147

Components Candidate Tools

Project Planning MicroPlanner

o Plan project activities.

o Define resources.

o Develop schedule.

o Define activity cxit cntena.

Activity-Based Process Modeling MicroPlanner, SPMS, AMS

Develop activity-based process models.

Incorporate reusable process components in activity planning.
Refine resources.

Refine schedule.

Refine activity exit criteria.

© 0 0 0O

Process Model Sirnulation SPMS

o Examine consumption of resources.
o Ability to view different execution paths prior to enactment.

Process/Project Planning Support MicroPlanner, SPMS .
o Refine activity-based process models.

o Provide project and process decision support.

o Support process data integration for cost model generation.

o Refine resources.

o Refine/revise schedules.

Role-Based Process Modeling KI Shell

o Identify and model project personnel role types.

o Allocate project activities to role types.

o Identify resource requirements to satisfy each allocated activity.

o Analyze how each activity could be meaningfully measured.

Process System Development Tool KI Shell, SPMS

o Design a system to support the role-based processes identified.
o Identify requirements for tool integration, in either KI Shell or the selected SEE framework.
o Implement the pro-esses as a KI Shell process system application.

Process Enactment Component K1 Shell, SPMS

Support process-driven software development.

Provide data for decision support for activity execution.
Enforce process enactment discipline between roles.
Accumulate actual process execution data.

View nnd report on process enactment status.

Maintain the “process state and history database.”

C 0 0 C OO

Process Monitoring Component SPMS, KI Shell

o Support “strategic” process monitonng.

o Watch for aggregate process trends.

o Support process ‘project plan update, based on task results.
o Generate reports for process impro .ient analysis,

Table 3. Components of a Process Support Environment

148 STARS Task IS-15 Software Process Tools and Lechniques Fyaluation Report Version 1.0

9.3.2 Process Support Environment Integration

Of the options identified, IBM will likely integrate the identified process components either as independent,
loosely integrated applications running on top of AIX or integrated into a SEE framework. Both options
will be briefly discussed.

9.3.21 A Process Support Environment Integrated on Top of AlX

The tools of SPMS, KI Shell, ORACLE, AMS and MicroPlanner can be loosely integrated to provide a
process support environment. A loose integration strategy is an appropriate candidate, while SPMS is still in
the state of product prototype development. Control integration of applications could be handled through
the use of UNIX shell scripts, specially developed product bridges, or through limited use of KI Shell’s
product integration facilities.

Data integration could be handled thrcugh the use of ORACLE as a persistent “process state and history”
repository. SPMS will be developed based on the integration of NEXPERT Object and ORACLE, and
already has a facility to import data from MicroPlanner. KI Shell is a COTS tool, which uses ORACLE as
a persistent database. Using ORACLE as a common persistent database would facilitate data integration
between KI Shell and SPMS. MicroPlanner is already set up to import and export table data. Further,
NEXPERT Object provides an ORACLE bridge. As a result, investment in data integration bridges should
be minimized.

Alternatively, standard application programming interfaces could be provided by the KI Shell to permit
SPMS to create and store appropriate process data in the process repository. KI Shell could also provide the
interface to invoke the SPMS tool within the “process management” role of any KI Shell method. Other
roles of a KI Shell method could be designed to write critical execution metrics in the process repository.
The “process management” role could be developed to employ this data, as well as make it available to
SPMS, to support its process management role of process monitor.

A KI Shell application could be developed to provide process integration for a project, including the process
engineering and project management functions, based on the processes they perform and the tools they
require.

9.3.2.2 A Process Support Environment Integrated into HP SoftBench

Control integration between a K1 Shell process application and the selected Process Support Environment
tools could be accomplished through the use of HP SoftBench’s message service. Figure 55 on page 150
provides an architectural view of the Process Support Environment’s components, communicating through
the message service, while data integration is accomplished either through ORACLE or on a tool-to-tool
basts, as described in the previous section. Please note that Figure 55 on page 150 takes a product view and
that the Process Support Environment components identified carlier arc functionally integrated into the
architectural components shown.

Process integration, as identified above, to support project use, could be managed through a KT Shell process
apphcation.

IBNM STARS SEE Process Management Architecture Discussion 149

Role- Process State
Based and History
Process Repository
System
Process v Process
Enactment Database i

. m
Mechanism ORACLE
Provided by a
KI Shell
Application

Software Process Project
Management System Planning and
Activity-Based Management
Process Modeling and Proc- System
¢ss Monitoring
Persistani “Policys and 1 | MicroPianner
Data and Rules in XPert or Suil-
Metrics NEXPERT ablc Rcplace-
Formulas in Object ment to Provide
the SQL compatible
ORACLE tabic daia ex-
Database; ports.

1

1

i

Message Service

l \
|

User User
Application Application
(1)—) —
Invoked Invoked
from the K1 from the KI
Shell-based Shell-based
Process Process
Sysiem System

[N N N N J

Pl

User
Application
(N)—
Iavoked
from the KI
Shell-based
Process
System

Figure 55. Candidate IBM Process Support Environment Architecture Concept.

The “role-based process system” block shown on Figure 55, represents a KI Shell application to support the
PSE process enactment component. The “process state and history repository” block shown on Figure 55,

represents the persistent store of process data that is to be shared by the K1 Shell process application and
SPMS. The "Software Process Managemcent System” and “Project Planning Management System” blocks
shown on Figure 55 satisfy the following PSE components:

¢ Project Planning

150 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

« Activity-Based Process Modeling
* Process Model Simulation

« Process/Project Planning Support
* Process Monitonng.

The PSE components not shown on Figure 55 on page 150 are the “Role-Based Process Modeling Compo-
nent” and the “Process System Development Tool Component.” These components are satisfied in part by
the KI Shell development environment, and suitable COTS CASE tools, such as CADRE TEAMWORK
and Statemate. Both activity-based and role-based process modeling may be facilitated by using AMS to
help identify candidate process assets for reuse.

9.3.3 Benefits of a Process Support Environment

Several advantages result iom a tool set integrated into a process support environment. With data inte-
gration -- all process tools work on the same database -- it is possible to use the same current data. This
results in many advantages:

1. Simulation can use actual project execution data preserved by the enaction tool. Therefore, simulation
provides more accurate project status for process management and for replanning. This facilitates con-
tinuous process improvement.

2. Process management is based on actual resource usage, because consistent data is used by all tools. This
avoids cost overruns.

3. There is global awareness of exact process status. This allows early resources to be redirected to
problem areas.

4. By enacting a modeled process and capturing precise model-based metrics in the database, real process
improvements are easier to identify. ’

KI Shell’s Process State Data contains a role, activity structure, and attribute data. Program interfaces can
be provided to all tools that are to be tightly integrated. The integrated process support environment
depends on three levels of integration, namely:

1. Data Integration:

Common, consistent, up-to-date data available for all tools.
2. Control Integration:

Standard way to invoke, suspend, and pass data to a tool.
3. Process Integration:

Discipline by which users collaboratively enact steps.

These three levels of integration are illustrated in Figure 56 on page 152.

IBMESTARS SEE Process Management Architecture Discussion 151

)

PROCESS
INTEGRATION [
* Process Disciple

Enforced

CONTROL

INTEGRATION
Process Process Process Process Domain
* Each Tool Modeling | | Simulation | {Managemeny | Enaction Tools
Invoked in a

Standard Way
(- Process State Repository:’ h
DATA Activity Preced
INTEGRATION . R;levny recedence
+ Activity Resources
* Common ¢ Overall Schedule
Process Data « Enaction Data
and History » Activity Attributes
 ° Role Attributes)

Figure 56. Levels of Integration.

152 STARS Task 1S-15 Software Process Tools and Techniques Evaluation Report Version 1.0

10.0 1S-15 Task Conclusions

From conducting the “Cleanroom Software Process Case Study” we reached the following conclusions:

1. A pre-condition for implementing a process for support by a process enactment mechanism is a well-
defined process.

The “Cleanroom Engineering Software Development Process (SDP)” is a very well-defined process. The
Cleanroom Engineering SDP was prepared for humans to follow in performing Cleanroom Engincering
to develop software systems. However, the Cleanroom Engineering SDP needed to be expressed in a
sufficient level of detail to enable its programming as a KI Shell application, namely CEPA, to support
the enactment of the Cleanroom Engineering SDP.

2. It is possible to implement complex processes in the KI Shell.

The “Cleanroom Engineering Software Development Process” was a very suitable example for the KI
Shell, in that it was able to take advantage of the its representation and processing power. KI Shell was
developed to accommodate sophisticated processes where:

a. Each process is composed of multiple steps
b. There is synchronization of processes among process steps

c. There is cooperation among processes steps (e.g. one step may produce a result usable by
another process step, etc.)

d. Process steps require the invocation of utility or application programs
e. Process steps have a reasonably complex control structure.
3. It is possible to implement a complex KI Shell process application in a reasonable time frame.

The final version of the CEPA prototype system, based on the CEPA specification, was implemented in
1 man month. Much of the time spent on the case study problem was in understanding the problem,
not implementing it.

4. The use of Box Structure notation for recording processes as exemplified in the “Cleanroom Engineering
Software Development Process” is excellent for conveying process requircments.

The case study implementation team was able to read this process document and interpret the process
notation without formal training. However, it was expressed that “box structures reader training” would
have been helpful. However, Box Structure notation is not all that is required to plan processes for
development. Role specification and planning techniques are also extremely important.

From conducting the “SPMS/KI Shell Coexistence Study,” we reached the following conclusions' :
1. Development of process models for a software development project require “activity-based” process mod-
cling as well as “role-based” process modcling.

The Software Process Management Systemn provides the ability to combine the process model for a
project with project planning data to produce the "Project’ Process Plan.” 'The K1 Shell allocates project

13 1t should be recognized that the "SPMS K1 Shell Coexistence Study” is based on our current understanding of the
state of both the SPMS product and K1 Shell. and the identified COTS tools. Further, the coexistence strategy
sugpgested, may have to be revisited several imes before a final "Process Support I nvironment Solution” architecture
is realized.

IS 15 Task Conclusions 153

activities to specific roles assigned the responsibilities to perform project activities and support people
who assume these roles in following the prescribed process.

After the network of activities for a project have been identified, they can easily be allocated to roles, and
methods for user role support of process activities (or process tasks) can be developed.

2. Processes, at the “activity level” can be simulated before deploying them for use.

The Software Process Management System provides the ability to simulate a process to determine how it
will perform under specified conditions. The results of the simulations can be used to correct or improve
a process model, before it is implemented for enactment.

3. SPMS and the KI Shell can provide complementary support in the preparation of a STARS process man-
agement solution.

The Software Process Management System can provide support for process activity modeling. KI Shell
can provide support for role modeling and process enactment. SPMS can provide a simulation and
momnitoring capability. KI Shell can provide tactical control over the execution of the process applica-
tion developed, and could make available process and product state data, and event data to SPMS to
permut the tracking of the planned “process/project plan” versus actual project performance. Where the
KI Shell provides users with knowledge of what tasks to perform and provides process guidance to
perform the tasks, the SPMS can provide the users knowledge of when to perform their tasks. We feel
that the combination of these two powerful capabilities will provide an excellent basis for fielding a soft-
ware process management capability.

4. The product and process metrics available in SPMS and KI Shell will help facilitate a process measure-
ment and improvement capability for management.

K1 Shell provides a built-in capability to collect process metrics within process steps and report them for
analysis. Further, it is possible to build in to KI Shell process applications, the execution of tools to
provide product metrics for collection and reporting. SPMS has integrated the RADC Quality Frame-
work product measurements and makes them available for use in developing activity-based process
models. The combination of these capabilities provides process engineers with a set of tools for col-
lecting and analyzing measurements collected from performing process steps and measurements collected
about the products of process steps, to support a project’s process improvement activities.

154 STARS Task IS-15 Software Process Tools and Lechniques Evaluation Report Version 1.0

11.0 References

10.
I

15.

16.

. Adams, E. N., “Optimizing Preventive Service of Software Products,” IBM Joumal of Research and

Development, January 1984.
Boehm, B. W., et al., “Characteristics of Software Quality,” North Holland Publishing Company, 1978

. Boehm, B. W., “Software Engineering Economics,” Prentice-Hall, 1981.

Boehm, B. W., “Improving Software Productivity,” IEEE Computer, Volume 20, Number 9, September
1987, pp. 43-57.

Boehm, B. W., “The Spiral Model of Software Development and Enhancement,” IEEE Computer,
Volume 21, Number 5, May 1988, pp. 61-72.

Brooks, F. P., “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE Computer,
Volume 20, Number 4, Apnl 1987.

Cobb, R. H. and H. D. Mills, “Engineering Software under Statistical Quality Control,” IEEE Software,
November 1990.

Curtis, B., H. Krasner, and N. Iscoe, “A Field Study of Large Software Projects,” Communications of
the ACM, Volume 31, Number 11, November 1988.

Cusumano, M., “Hitachi: Pioneering the Factory Model for Large-Scale Software Development,” MIT
Sloan School, Working Paper 1886-87, Cambridge, Massachusetts, 1987.

DeMarco and T., T. Lister, Peopleware, New York: Dorset, 1987.

Dyer, M. and A. Kouchakdjian, "Correctness Verification: Alternative to Structural Software Testing,”
Information and Software Technology, January/February 1990, pp. 53-59.

. Green, §.E., A. Kouchakdjian, and V. R. Basili, "The Cleanroom Case Study in the Software Engineering

Laboratory: An Experiment in Formal Methods,” SEL., University of Maryland, 1989.

. Humphrey, W. S., “Characterizing the Software Process: A Maturity Framework,” IEEE Software,

March 1988, pp. 73-79.

. Kellner, M. 1., and H. D. Rombach, “Session Summary: Comparisons of Software Process Descriptions,”

Proceedings of the 6th Intemational Software Process Workshop: Support for the Software Process,
Hakodate, Japan, ACM Press, October 29-31, 1990.

Kling, “The Web of Computing: Computer Technology as Social Organization,” Advances in Computers,
Volume 21, pp. 1-90, Reading, Massachusetts: Addison Wesley, 1982.

Krasner, H., B. Curtis, and N. Iscoe, “Comvmunications Breakdowns and Boundary Spanning Activities on
Large Programming Projects,” in Proceedings of the Second Workshop on Empirical Studies of Pro-
grammers, pp. 47-64, Norwood, New Jersey: Ablex Publishing, 1987.

. Lehman, M. M, and L. A. Belady, eds., “"Program Evolution: Processes of Software Change,” APIC

Studies in Data Processing, Volume 27, London: Academic Press, 1985.

. Tinger. R C.OIL D Mills, and B. 1. Witt, Structured Programming: Theory and Practice, Reading.

Massachusetts: Addison Wesley, 1979.

Finger, R.C.and H.D. Midis, A Case Study in Cleanroom Software Enginecring: The IBM COBOL
Structuring Facility,” Proceedings of COMPSAC ‘88, IETL:. 1988,

. Linger, R, C.and 1L D. Mills, "4 Case Study in Cleanroom Software Fngincering: The IBM COBOL.

Structuring Fucility.” Proceedings of COMPSAC 88, 1EFE, 1958,

- MceCall, J., "Factors in Software Quality,” GE-TIS-77CIS02, General Fleetne Company. 1977.

References 155

22.

23.

24,

25.

26.

27.
28.
29.
30.

31

32.

33.

34,

35.
36.
37.

38.

39.
40.

McGarry, F., "What Have We Learned in the Last Six Years?” Proceedings of the Seventh Annual Soft-
ware Engineering Workshop (SEL-82-007) Greenbelt, Maryland: NASA GSFC, 1982.

Mills, H. D.,”Stepwise Refinement and Verification in Box-Structured Systerns,” IEEE Computer,
Volume 12, Number 6, June 1988.

Mills, H. D, R. C. Linger, and A. R. Hevner, Principles of Information Systems Analysis and Design,
Academic Press: Orlando, Florida, 1986.

Musa, J. D, and F. N. Woomer, “SAFEGUARD Data-Processing System: Software Project Manage-
ment,” Bell System Technical Journal, SAFEGUARD Supplement (1975), $245-S259.

Phillips, R. W, “State Change Architecture, A Protocol for Executable Process Models” in Representing
and Enacting Process - Proceedings of 4th International Software Process Workshop, IEEE Press, 1988.

Pierce, P.A., “Software Quality Framework Issues,” Volume I, 11, 111, SAIC, San Diego, CA.
Reed, B.,”Process Metrics Working Notes,” UES, Columbus, Ohio, July 24, 1991.
Ross, N., “Editorial Comments on Process Metrics,” IEEE Software, Volume 23, Number 7, July 1990.

Royce, W., “Managing the Development of Large Software Systems: Concepts and Techniques,” Pro-
ceedings, WESCON, August 1970.

Scacchi, W., “"Managing Software Engineering Projects: A Social Arzalysis,”.lEEE Transactions on Soft-
ware Engineering, Volume 10, Number 1, January 1984, pp. 49-59.

Selby, R. W., V. R. Basili, and F. T. Baker, “Cleanroom Software Development: An Empirical Evalu-
ation,” IEEE Transactions on Software Engineering, Volume SE-13, Number 9, September 1987.

Vosburgh, Curtis, Wolverton, Albert, Malec, Hoben, and Liu, “Productivity Factors in Programming
Environments,” Proceedings of the Seventh International Conference on Software Engineering, Wash,
DC. IEEE Computer Society, 1984, pp. 143-152.

Walston, F., “4 Method of Programming Measurement and Estimation,” IBM Systems Joumal, Volume
16 Number 1, 1977, pp. 54-73.

Weinberg, G. The Psychology of Computer Programming, New York: Van Nostrand Reinhold, 1971.
"CEPA: The Cleanroom Engineering Process Assistant,” STARS Task IS-15, July 10, 1991.

"The Cleanroom Engineering Software Development Process,” STARS Task IR-70E, CDRL Sequence
07001-001, February 28, 1991.

“A Software Process Management System for the STARS Software First Life Cycle,” IBM STARS
Deliverable CDRI, Number 3016, 29 October 1990.

“User's Manual for SPMS,” IBM STARS Dechiverable CDRL Number 3118, 17 June 1991.

"RADC Quality Framework (Technical Report (Interim) Volume IV Software Quality Framework,” Con-
tract #1'30602-88-C-0019, CDRL Sequence # A007, Software Productivity Solutions, September 1989.

156 STARS Task 1S-15 Software Process Tools and Techniques Lvaluation Report Version 1.0

Appendix A. SPMS Training Class Materials

This section includes the “SPMS Training Class” student handout.

Appendix A SPMS Training Class Materials 157

Training Materials for the

SPMS

Software Process Management System

Click Anywhere To Begin
Another great tool from tha SYIGroup

Course Objectives

The course will focus on :
e Using the Software Process Management System
¢ Learning to create process models

e Learning how each element of the SPMS interacts
with other elements

¢ Learning how to use the project specific plans
to assist in validation of the process models

By the end of the course , students will have:
e Become familiar with the elements of the SPMS

¢ Created, instantiated, and simulated their own
process models

Course Schedule
Day 1
9:00 Course Introduction and Overview
SPMS Overview
Process Models vs Project Plans
Granularity Issues
Nodes, Constraints, Phases
Architectural Levels
Development Modes
Hierarchical Models
Measurement Model
Graphical Representation
10:00 Building a simple Model in Xpert
Exercise 1
10:30 SPMS model representation
Exercise 2
11:00 Project Specific Data
11:30 Exercise 3
12:00 Lunch
1:00 Discussion of exercises
1:30 Scheduling the Plan
2:00 Exercise 4
2:30 Graphic Monitoring
3:00 Simulation of the Plan
3:30 Exercise 5
4:00 Discussion and review

Day 2

9:00 Review/Questions

9:30 Validation tasks and Rework
10:00 More Complex Models

10:30 Exercise 6

11:00 Discussion & Questions
11:30 Summary and support issues.

12313

- sl e

aeY ABojouyoe] elemijog

bujujedy ¢ smajaay

JuawaAoadiyy} . 1s93/ubjsap
$§s9204d snonujjuo) - /Sjuawadinbad/as —
uojjusAadd 3099 §59204d J6U3 MS shodobiy

s|sh|eue sgng -

9 JuaWaJNsea W YO -
§$9204d % Ajjlend WO -
Bujuueid/Wd -

jJuswabeuely o)seq

snoo4 Juswanoidwy Ayjiqede) ssao0.d

Juswabeuely SS900.4d 918M1J0S

= U0J10BUD + Spoylaw Buuojjuow + ueld siyl

MOH ‘Uaym ‘1eYyM ‘OYMm = S924N0S3Y YUM UB|d PaJNPayos
usym = Buynpayss + suoneing

OYM = S92.N0SsaYy

1BUM + MOH = uejd

1ByM = eieqg 109foid

MOH = [9POJ SS820.4

iIuswabeuel ssa201d 91eM140S S| 1BYM

O NN

sallAnOY
Juswdojanag
9a40jug % ‘Yoaysn

‘apiny ‘uoddng
JUBaWIUOJIAUT

paldlud) ssad0.id

A

uojew.ou] Ssad0.d
sjooL

/
~

1 _ O&m.u 1o8foid
e N

U T uedio9foud
s|{oo].
Bunioyiuop
$S3901d
_ 1
suoiiuyeg S{ooL
$s99%0.d No1|dx3 uoniulag
- $S3204d

A

Bujuuejday
Bujuue|d = w
ﬁO\.Qw
Swmmoog . 19auibug
$$390.d
luawaaosdwy _

B JUBWISSOSSY

< ‘ubisaqg

$89201d

H

$94Npadoid pue spiepuels ajeiodio)

uonew.ojuj
oi10adg
109loid

wbipeled juswabeuepy ssesoid

Process Models vs Instantiated Plans

Process Model:

Represents a prototypical sequence of tasks,
milestones, constraints, and products necessary to
produce a prototypical single instance of each of the
types of software component within the process
model.

Process models provide the framework for producing
plans that may be replicated and a framework for
metrics which may measure the process.

Plans:

Contain numerous specific named and inter-related
instances of the software components and the
tasks necessary to produce them according to the
process model.

Plans are the baselines for monitoring progress of
a specific software development project.

SAIC,

"UOIIBWLIOJUI JL3BW Pa1J9||03 ploy 01 Sa|qel pue
‘spoyisw Bunoyuop

‘syonpoud
‘Sau01S9|IN
‘syset

paweu Jo aouanbas pauieIsuod J14199ds v

ueld 91e94)

3jing 8q 03 s3onpoid
‘sjeos Ayend
‘SolIaN

dj109ds

eleq 109foud

SWwJ04 UORJ||0) eleq pue
‘syulesIsuo)

‘s30Npoud

‘SOU0ISIIN

‘sysey

[edidA10304d4

|9POW SS920.d

ue|d = eileq 109foid + |9PON

—_——— - ~ 9deldluj] uoljejnwig -
_ UOol}29|9S BN *
—— CRLIVEMIT uoI199|9S
— 1980 JujeJISUOD UOIINDDXT -
= : uoiiuijaQg |9PON pue

| [S1QdsY uondsles usuodwon -

N / Bunip3
pue Ajju3g jusuodwo) -
(N\
aseg ejeq jusuodwo) mm_“.vwa
l9PON [Buluoseay ‘NVHLHOA
$5990.d $§920.d ‘5
L W,
S|9PON SS890.d s$9|ny pue
sjuauodwo) ssa800id - spoyisy Bupioyuol -
eleq [EOLO}SIH - [opow |[emdasuo)n
poseg-obpajmouy|

SIS J0 8In1931ydly

Process Model Granularity Issues

Process Interface

R ‘o: H
Import Graphic Model Edit Process Edit 10 and Constraints
) b7

& & &
Edit a Model Edit Product Edit Constraints

>

Delete Model

e Entire model

- Import Graphic Model
- Delete Model

e Named Groups of Components

- Edit Model
e Individual Components

- Edit Process

- Edit Product

- Edit Constraints

- Edit 10 and Constraints

—TAE

Nodes

{

e Task:

The basic component of a process model.

e Milestone:

A special node used to highlight important
events in a process model.

¢ Interface:

A special node used to link subnetworks
in the process model. Represents a
product in the SPMS.

e Reverse: (OR)

A special node used which allows the
successor to start when any predecessor is
complete rather than when alfpredecessors
are complete.

Constraints

Systems Analysis Phase

/=

e Finish to Start:

~ Specifies that a task cannot start until its predecessor’is complete.

¢ Finish to Finish:

~ Specifies that the completion of a task dictates the completion of its
successor. May have a duration to specify lag time between a task and
its successor.

e Start to Finish:

~ Specifies that a task cannot finish until its predecessor starts.

« Start to Start:

- Specifies that two tasks can start together. A duration applied to this
type of constraint indicates a lead time between the start of one task
and the start of its predecessor.

e Hammock links:

- May have resources

- Dynamic durations calculated as elapsed time between end points.
~ Used to represent phases in SPMS

=

Architectural Levels

(Cspman)
(sa) wa) sa)
e e I)
e e (e)

e Alternative architectural levels within a process model

¢ Nodes in a process model contain an architectural level parameter.
e Project specific software components also contain this parameter.

¢ Plans contain nodes in which the model and component parameters
match on both architectural level and development mode.

e

Development Modes

e Develop module?
e Reuse module?
e Prototype module?

e User defined....

e Alternative sequences of nodes within a process model

e Nodes in a process model contain a development mode
parameter.

® Project specific software components also contain this
parameter.

¢ Plans contain nodes in which the model and component
parameters match on both architectural level and
development mode.

¢ Allows instantiation time tailoring of model.

Hierarchical Models

Process component "A"

Process component "B"

Some Possibilities:

Process component "A" might be at the SYSTEM level.
Process component "B" might be at the CSCI level.
“B" might be considered "Part of" "A"

Process components "A" and "B" might be at the same
level and "B" specify greater detail than other pertions
of "A". "B" might be considered "Part of" "A"

How do you want to view parts in the model editor?

S.SINdS 03 [ed3aju] ade sjppows ss9904d pue solI33W Yjog

uoljenjeAd ol4lall Jo 3 nsad e se uaye] 9
pPInoys suoijoe jeym mouy J0 ‘ddnseall 0} udym Jo jeym
Ai13uapi Kj9A1399440 Jouueo auo sjppow ssaoouad Jnoylim

pajenjeAs aq jouues sjuauoduwioo
$$9904d 9]qeIno9aXa J0J BIJDYIID JIXD Y] SOLIJAW Inoyym

(06.AInp ‘ssoy °N) .."Juswdula. [OpPOW BALIP PINOD UOI393][09
Ol43oW Jey] sem sjopows ssadodd pue So143BW JO UOIIOBIIIUI

oy3 jnoqe A4aAa09sip Atepuodas juesodw) uy* [opow ssaso.d
uononpoJd ayj o3 [edSajul Saw09a(q Siskjeue pue uoi399jjoo eyep
10} jopow ssaoo04d ay) ‘sny) *ss9904d Jey) J404 BLI9}IID }IXD 9Y] ul
pauljop si “"saonpoJad 31 SWa}l pue ss8904d v U0 S91I39W 399109
0] paau ayjl "} op noA [jom Moy 3ulinsealt 9.4049q Sulop aJe nok
Jeym mouy snw noA°sold3owl ay3 uayl ‘|jspow ssaosodd 9y auijaq,,

SOLIJO Pue S|OPOI $S690.d ©]qBIN9ex3

|

S

SSOUDAIIO9)T SSAUAA|IOANT SSOUDA|IORNT SSOUIANOAYT

‘'sonquue ofiesn eleq abesn eileqg Bujssasold uopesjunwwon
IS0y} o sainseawl . .
aApemuenb ase soey ™ L_¢'d3 ¢d3 b'd3d 1’03

‘Ayjenb apjaoid
Yydlym sainqune

Pajualio 91eM}0S e
ale eyaiID

Bujssasold
SSQUAA|IO3)3

abeiois
S$SOUAAOIYT

SSAUdA09YT

‘Ayend

19Npoid JO SMIJA

pajuao

uswabeuel! e
ale si0108

}omawe.d Ayjenp oavy

——————

TABLE 1.1-3 SOFTWARE QUALITY FRAMEWORK
FACTORS AND ASSOCIATED CRITERIA

FACTOR

CRITERION

<OZMmMm=~=Q =T

K= OMAZ

KM m > =X

K= E>P L ~CICW

K —=E > 0c

wumZ—AOmMxB P00

== »Z > Z=>X

P Ll skl K IR R N o R

L w>OZ>oM

W e e B0 T T

K== >ImuvOOm- 2~

K~ =>4 0O

K=o nucmm

ACCURACY
ANOMALY MANAGEMENT
AUTONOMY
LISTRIBUTEDNESS

EFFECTIVENESS - COMMUNICATION

EFFECTIVENESS - PROCESSING
EFFECTIVENESS - STORAGE
OPERABILITY
RECONFIGURABILITY
SYSTEM ACCESSIBILITY
TRAINING

P o e

o ¢

KA

COMPLETENESS
CONSISTENCY
TRACEABILITY
VISIBILITY

Lol

APPLICATION INDEPENDENCE
AUGMENTABILITY
COMMONALITY
DOCUMENT ACCESSIBILITY
FUNCTIONAL OVERLAP
FUNCTIONAL SCOPE
GENERALITY
INDEPENDENCE

SYSTEM CLARITY

SYSTEM COMPATIBILITY
VIRTUALITY

HHHAK A

MODULARITY
SELF-DESCRIPTIVENESS
SIMPLICITY

HRAHX

Pl i

Pl o]

Ll alal

bt

Pl altal

FFQSS 945 SDFTNHRE TECHNOLOGY FOR ADAPTABLE RELIRBLE SYSTEMS — "“3?‘3‘4‘2‘“
(5TARSY PROGRAM SOFTWA. . (U IBM FEDERAL SECTOR DIV
GAITHERSEURG ND M H ETT 30 SEP 31 03705-004 XC-AFSC

UNLLHSSIFIED F12528-23-D-002

1.1)
FILMED

oTIC

e £
s = g
L2 e e

Data Collection Forms
by Phase and Architectural Level

Software Development Phase Form
System requirements analysis/design DCF A
Software requirements analysis DCF B
Preliminary design DCF C
Detailed design DCF D
Cading and CSU testing DCF E
CSC integration and test DCF F
CSCl testing DCF G
System testing DCF H
Operational test and evaluation DCF |
Architectural Data Collection Forms
Level

A B C D E F G H I
SYSTEM X X X
CSCI X X X X X X
CSC X X X X
CSuy X X X

i ——— - 2 -

TN e et L I s L
M/!Si/.}: ;sz,v/././! «aa$<wo..v.$<¢ m:w.(ivwﬁ W/f;/.. KON 2”\4 NRANS

. ® N |

Q

a/qaa/ddy 1on O

N QO £34 O

seliliqeded [onpialpuj
ay) o} pe)ebpnq uaeq
sjuswalinbaJd i99.n290 8ABH

Bz 1V

u.c.zc.ou

a/qeddy 19N QO
aN O s34 O

.sisfijsue Jouuo ue

J0 s}Insed 8y} $6qjLasep yajym
U0 }}8)UBWINI0P 8|Q8|}BAB

0} 89Us.13)8.4 8 aldayy S|

B 1°1°IV

enei=y J9@

1eABT=YY AW

fiyiienp antom

v

@pSIS)ed + (FTSIS / 9CSIS)q + (FT'SIS + 1)/ 1)et nso
@PPSIS)ed + (PTSIS/PESIS)G + (PUSIS+ 1)/ De® nso SIS
. (>81'¥1S) DS
GLIYIS)eW + (391PIS)el +
EYrYVIS/ oSIVIS)IeX + (EEAV / (FEUYIS + 3TUIYIS) = Dol + (0°CCAV / FTITVIS) - 1)} +
PFOIVIS/ Dol + (EEIV / F6FIS) = o8 + (8¥IS)J + (0°9FIS / L¥IS) - 1)e® +
(VIS /¥SVIS) = DeP + ((FEVIS + 1) / 1)ed + (THIS)eG + (FT'YIS)e® nso
) Psryi1s) DO
PTYIS)ef + (PPIVIS / PSIFIS)! + ((PTVAV /
(PEIYIS + PLIFIS))~ DB+ ((PTTAV/ PITFIS) = 168 + (POI'VIS/ Dad + (PEYIS)e? +
((POYISIPLYIS) - DeP + (P9VIS/ PSYIS) - Do + (PTTAV/ PEVIS) = 1eQ + (PTVIS)e® nso IS
GreIs+oIeIS+ /1 nso ’
@PTCIS+HPICIS+ 1)/} nso €IS
@1TIs) waishg
#1718 DO
P1T18) nso
(>1TIS) PO
. ' @1zIs) DO
YINWHO4 SINTNTTIIORILIN T3AT] ONLIAN

95BYJ PUB [9AY] AMPdANYIIY Lq

SIUIWIF SHUISA U0 paseg sejnuLo,] 3uli038 U Y xipuaddy

Validation Tasks and Rework Node Id'S

4

1 2 =
Task "A" Task "B" Milestone Product
Process id DCF A, 123 "c" "p"
123 SYSTEM

Task "B" is a validation task.

When Task "B" begins it requests that the Data Collection Form (DCF A) associated
with it be filled with data.

When the data becomes available, the metrics associated with this project are
computed and compared with the quality goals of Product "D".

¢ Quality goals met, then Task "B" is complete and the Milestone "C" is met and

~ Product "D" becomes available.

¢ Quality goals not met then replanning will find the task associated with product

"D" which is of the process type "123" and use it as the starting point for cloning
up to and including the validation task.

1 2
Task "A" Task "B" Milestone
Process id DCF A, 123 "C" "D"
123 SYSTEM
5 6
Task "A" Task "B"
Process id DCF A

123 SYSTEM

Impact of

Re-Work on other Process Components
Tasks Not Started Case

Process Component 1

5
I s (=) 2
Task "A" Product "E" Task "B" Milestone Product
Process id Version 1.0 DCF A, nen npn
123 123
SYSTEM
7
N (=)
Task "A" Prodyct “"E" Task =g
Process id Version 2.0 DCF A
123 SYSTEM
Process Component 2
D S ¥ 4
§ 35 o
9 10 } — — — -
' A
?&m "e® N
' ersion 1.0 ‘ TaSk l!G'l
Not yet started.
7
Product "E"

Version 2.0

Impact of Re-Work on other Process Components
Tasks In Progress Case

Process Component 1

5

-

Task "A" Product "E"
Process id Version 1.0
123

2
Task "B" Milestone Product
DCF A, _"C" D"
123
SYSTEM

7
e
Task "A" PrOdEJCt "E" Task "B"
Process id Version 2.0 DCF A
123 SYSTEM
Process Component 2
5
=) 9 10 |} - - -4
Product "E"
Version 1.0 Task "G"
Started but not
7 Finished

Product "E"
Version 2.0

Impact of Re-Work on other Process Components
Tasks Complete Case

Process Component 1

S
1 ‘\‘),‘ 2
Task "A" Product "E" Task "B" Milestone Product
Process id Version 1.0 DCF A, wee "p"
123 123
SYSTEM
7 |
¢ =
Task "A" Crodyct ;E(')' Task "B"
Process id ersion c. DCF A
123 SYSTEM
Process Component 2
5 -
) 9 10 }+ — — — 4
Product "E"
Version 1.0 Task "G" Task "H"
Finished Finished
7

@ 11 12 | — — —~

Product "E"
Version 2.0

Task "G" Task "H"

Bupoyjuon
eojydwp

SWdS woy

usid podxg

usid

usid
peInpeyog

eindexy

sued

ejaig
PPY

Iepoiy

$84%Qug
peioiivy

LRARFUMURA

POW 1P3

r S s

sdiysuopeiey
indinonnduy
1p3

NN
MOMONOMONOAOM)

sjusuodwodn
1Inpaid \ip3

NPT AT LIT RS Rt R

sjueuodwiod

peiuswngsy)
PUW peujesisu0d

SKdS
U] PO
sse50id
Modw)

»oydap

Vedy uvid eINpeyog
wouy ueid pus seunosey
PeInpeyds ‘suojieing ppY

uopsjuesaudey

tedy
o Lodw

sueuodwo)
1anpoid suyeg

sjueuodwo)
$802Qud euljieQ

NURIISUOY suljeq

esagwieq opjen

SWI0g UOHID8|j0D

ReQ suyeg

sejnuuoy

SHiep suleq

Exercise 1

1. Using the associated hand-out input the System Requirements Analysis
subset of the process model as a part of a farger model.

2. Create a Systems Analysis Phase .
3. Use only Finish-to-Start constraints.

4. Export the model from Xpert.

‘6. DEVELOPHENT PROCESS

6.0.1 The developer shall implement a process for developing the

software. The development process will be composed of the following
major activities: .

a. System Requirements Analysis
.. b. System Design C
c. Software Requirements Analysis
4. Software Architectural Design
e. Software Detalled Design
£. Software Coding and Testing
g. Software Integration and Testing
h. Software Configuration Item Testing
i. system Integration and Testing
J. System Testing
X. System Installation and Checkout.

€.0.2 The developer shall select and map these activities onto the
life cycle model established for the software project. The selected

activities wmay overlap and xmay be performed iteratively or
recursively.

6.0.3 The develcoper shall use the wmethodologies, standards, and
procedures that are systematic, adequately documented, and established
by the developer's organization for performing the activities.

6.0.4 The developer shall use the computer program=ing language(s)
as specified in the contract to code the deliverable goftware.

€.0.5 The developer shall consider incorporating non-developmental
itens into the deliverable software. Incorporation of such itexms
shall comply with the documentation, data rights, wvarranty, and other
requirements as specified in the contract.

€.0.6 The developer may employ non-deliverable items in the
development or maintenance of software. However, the developer shall
ensure that the operation and maintenance of software after its
delivery to the purchaser will be independent of such non-deliverable
items. In case such independence cannot be ensured, the developer
shall treat the non-deliverable items =5 non-develcpmental upon
notifying the purchaser regarding the impact of non~deliverable itexs

on the cost, schedule, operation, and maintenance of the deliverable
scftware,

17

6.1 Svstem Requirements Analysis. The developer shall perform or
F support the following system requirements analysis activities.

6.1.1 Engineering. The developer shall analyze the statement of
need, statement of work, and recommended solutions, if available, to

define a set of system requirements addressing the following ag a
minipunm:

a. Functions and capabilities of the total systen, including
performance, Qquality, and physical characteristics angd
environmental conditions under which the system will perform:

b. Safety requirements, including those related to equipnment
characteristics and degradation, methods of operation and
maintenance, environmental influences, and perscnnel injury:

c. Security requirements, including those related to operational
and maintenance environments and compronise of sensi
information or materials;

d. Human engineering requirements, including those related to
constraints on personnel, areas needing concentrated human
attention and sensitive to human errors, and training;

e. Interfaces requirements for interfaces external to the systen,
including interfaces with users:

f. Operation and maintenance requirements.

® §.1.2 gQualification Testing. The developer shall define a set of
systen qualification requirements, includirng qualifications methods,
for verification, validation, and testing of the system requirements.

tive

6.1.3 Docurmentation. The developer shall document the system and

qualification requirenments in a system requirenments document in
accordance with section S5.4.

6.1.4 Product Fvaluatjon. The developer shall perform evaluations
of the system and qualificztion requirements for the criteria
identified below as a minimum. When a problem is detected, corrective
actions shall be taken in accordance with section 9.3.3.

a. Consistency -~ external and internal:
b. Traceability;

c. Test coverage of requirements;
d. Testablility:

e. Feasibility of design, operation, and maintenance;

- 6.1.5 TFormal Review. The daveloper shall conduct cne or xore system
requirements reviews in accordance with section 5.2.
6.1.6 confiquration Management. The developer shall yplace the

documents identified below under configuration management and perfora
configuration control in accordance with secticn 9.1:

a. Statemant of work
b. Systenm requirements document.

18

e ——— ——— e e

Exercise 2

1. Import the graphic model of Exercise 1 into the SPMS.

2. Browse the fine grained components using "Edit Process", "Edit
Products”, and "Edit Constraints” buttons.

3. Browse the product to producer and consumer relations using the
"Edit 10 and Constraints" button

4. Browse the hierachica: coarse grained ccmponents using the "Edit
Model" button

-

5. Edit your model as desired .

Exercise 3

1. Move to the Project Interface and create a new Project.

2. Define a system level component with a source to match the
development mode of your model.

3. Create a Plan by selecting your model and your project and providing a
name for your plan.

4. Export the plan from the SPMS

Exercise 4

1. Create a new project in XPERT. Clear the New Subproject which is
automatically created. From the Date Control Panel, Turn off the Show
Hours/Minutes option .

2. Import your plan into XPERT.

3. Use "Clean Up" to improve the readability of the activity network.

4. Select the tasks in the network and enter durations. (Format is
"weeks,days".

S. Perform Time Analysis.

6. Build a Gannt chart to display your results. See Gannt chart options for
tailoring the chart.

7. Build a Table view. Use "Selected Table" with "0" resources displayed

8. Select the entire table and Export it from XPERT. (use name.DAT"
format)

Exercise 5

1. Import the scheduled plan into the SPMS.
2. Randomize the durations of your plan.
3. Create some graphs for monitoring your plan during execution

4. Execute the plan.

Exercise 6

1. Open your model in Xpert.

2. Add a validation task for the Systems Requirements Document.

3. Be sure your DCF and rework node id are appropriate!

4. Alter the constraints to allow some tasks to begin when any of their
inputs are available but only finish when all of their required inputs have
been made available.

5. Export the model from Xpert.

6. Import the model into SPMS

7. Create a new project.

8. Select measures and default quality goals for this project.

9. Define Parts.

10. Create a new plan using your new model and new project.

11. Execute the plan.

12. Replan as necessary.

